Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 26
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Edo
1
64 kgSmetanine
2
69 kgZanette
3
82 kgTorrent
4
71 kgGarzelli
5
62 kgWadecki
6
70 kgAggiano
7
63 kgNieto
8
68 kgAstarloa
10
61 kgBölts
11
73 kgDi Luca
12
61 kgHamburger
13
58 kgMazzoleni
14
67 kgBoogerd
15
62 kgMerckx
16
77 kgRodríguez
17
58 kgGonzález
19
69 kgMcEwen
20
67 kgRubiera
21
69 kgKessler
22
70 kgRatti
23
64 kgNiermann
25
64 kg
1
64 kgSmetanine
2
69 kgZanette
3
82 kgTorrent
4
71 kgGarzelli
5
62 kgWadecki
6
70 kgAggiano
7
63 kgNieto
8
68 kgAstarloa
10
61 kgBölts
11
73 kgDi Luca
12
61 kgHamburger
13
58 kgMazzoleni
14
67 kgBoogerd
15
62 kgMerckx
16
77 kgRodríguez
17
58 kgGonzález
19
69 kgMcEwen
20
67 kgRubiera
21
69 kgKessler
22
70 kgRatti
23
64 kgNiermann
25
64 kg
Weight (KG) →
Result →
82
58
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | EDO Ángel | 64 |
2 | SMETANINE Serguei | 69 |
3 | ZANETTE Denis | 82 |
4 | TORRENT Carlos | 71 |
5 | GARZELLI Stefano | 62 |
6 | WADECKI Piotr | 70 |
7 | AGGIANO Elio | 63 |
8 | NIETO Germán | 68 |
10 | ASTARLOA Igor | 61 |
11 | BÖLTS Udo | 73 |
12 | DI LUCA Danilo | 61 |
13 | HAMBURGER Bo | 58 |
14 | MAZZOLENI Eddy | 67 |
15 | BOOGERD Michael | 62 |
16 | MERCKX Axel | 77 |
17 | RODRÍGUEZ Joaquim | 58 |
19 | GONZÁLEZ Aitor | 69 |
20 | MCEWEN Robbie | 67 |
21 | RUBIERA José Luis | 69 |
22 | KESSLER Matthias | 70 |
23 | RATTI Eddy | 64 |
25 | NIERMANN Grischa | 64 |