Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 9
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Zanette
1
82 kgEdo
2
64 kgBoogerd
3
62 kgDi Luca
4
61 kgSmetanine
5
69 kgZanotti
6
70 kgMazzoleni
7
67 kgTorrent
8
71 kgZabel
10
69 kgAstarloa
11
61 kgGarzelli
12
62 kgWadecki
13
70 kgGonzález
14
69 kgVázquez
15
65 kgBeltrán
16
60 kgNieto
17
68 kgZülle
19
72 kgGarrido
21
70 kgBölts
22
73 kgMcEwen
25
67 kg
1
82 kgEdo
2
64 kgBoogerd
3
62 kgDi Luca
4
61 kgSmetanine
5
69 kgZanotti
6
70 kgMazzoleni
7
67 kgTorrent
8
71 kgZabel
10
69 kgAstarloa
11
61 kgGarzelli
12
62 kgWadecki
13
70 kgGonzález
14
69 kgVázquez
15
65 kgBeltrán
16
60 kgNieto
17
68 kgZülle
19
72 kgGarrido
21
70 kgBölts
22
73 kgMcEwen
25
67 kg
Weight (KG) →
Result →
82
60
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | ZANETTE Denis | 82 |
2 | EDO Ángel | 64 |
3 | BOOGERD Michael | 62 |
4 | DI LUCA Danilo | 61 |
5 | SMETANINE Serguei | 69 |
6 | ZANOTTI Marco | 70 |
7 | MAZZOLENI Eddy | 67 |
8 | TORRENT Carlos | 71 |
10 | ZABEL Erik | 69 |
11 | ASTARLOA Igor | 61 |
12 | GARZELLI Stefano | 62 |
13 | WADECKI Piotr | 70 |
14 | GONZÁLEZ Aitor | 69 |
15 | VÁZQUEZ José Manuel | 65 |
16 | BELTRÁN Manuel | 60 |
17 | NIETO Germán | 68 |
19 | ZÜLLE Alex | 72 |
21 | GARRIDO Martin Gerardo | 70 |
22 | BÖLTS Udo | 73 |
25 | MCEWEN Robbie | 67 |