Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 49
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Zabel
1
69 kgZberg
2
72 kgBayarri
3
67 kgUsov
4
63 kgRodríguez
5
58 kgEkimov
6
69 kgEngels
7
64 kgGálvez
8
68 kgTorrent
9
71 kgFlecha
10
72 kgCommesso
11
66 kgFrigo
12
66 kgLatasa
13
66 kgCasero
14
74 kgJufré
15
65 kgLandaluze
16
65 kgBurgos
17
58 kgMayo
19
65 kgPiepoli
20
54 kgVila
21
67 kgPérez
22
61 kgRasmussen
23
58 kgPereiro
25
67 kg
1
69 kgZberg
2
72 kgBayarri
3
67 kgUsov
4
63 kgRodríguez
5
58 kgEkimov
6
69 kgEngels
7
64 kgGálvez
8
68 kgTorrent
9
71 kgFlecha
10
72 kgCommesso
11
66 kgFrigo
12
66 kgLatasa
13
66 kgCasero
14
74 kgJufré
15
65 kgLandaluze
16
65 kgBurgos
17
58 kgMayo
19
65 kgPiepoli
20
54 kgVila
21
67 kgPérez
22
61 kgRasmussen
23
58 kgPereiro
25
67 kg
Weight (KG) →
Result →
74
54
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | ZABEL Erik | 69 |
2 | ZBERG Beat | 72 |
3 | BAYARRI Gonzalo | 67 |
4 | USOV Alexandre | 63 |
5 | RODRÍGUEZ Joaquim | 58 |
6 | EKIMOV Viatcheslav | 69 |
7 | ENGELS Addy | 64 |
8 | GÁLVEZ Isaac | 68 |
9 | TORRENT Carlos | 71 |
10 | FLECHA Juan Antonio | 72 |
11 | COMMESSO Salvatore | 66 |
12 | FRIGO Dario | 66 |
13 | LATASA David | 66 |
14 | CASERO Rafael | 74 |
15 | JUFRÉ Josep | 65 |
16 | LANDALUZE Iñigo | 65 |
17 | BURGOS Nacor | 58 |
19 | MAYO Iban | 65 |
20 | PIEPOLI Leonardo | 54 |
21 | VILA Francisco Javier | 67 |
22 | PÉREZ Santiago | 61 |
23 | RASMUSSEN Michael | 58 |
25 | PEREIRO Óscar | 67 |