Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 2
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Zberg
1
72 kgBayarri
2
67 kgZabel
3
69 kgFlecha
4
72 kgEngels
5
64 kgUsov
6
63 kgTorrent
7
71 kgWrolich
8
68 kgBelli
9
64 kgEkimov
10
69 kgRodríguez
11
58 kgLandaluze
12
65 kgBurgos
13
58 kgHondo
14
73 kgVila
15
67 kgCasero
16
74 kgGutiérrez
18
71 kgSchleck
19
65 kgGustov
20
64 kgPereiro
21
67 kgPérez
22
61 kgSchmidt
24
73 kgFörster
25
83 kg
1
72 kgBayarri
2
67 kgZabel
3
69 kgFlecha
4
72 kgEngels
5
64 kgUsov
6
63 kgTorrent
7
71 kgWrolich
8
68 kgBelli
9
64 kgEkimov
10
69 kgRodríguez
11
58 kgLandaluze
12
65 kgBurgos
13
58 kgHondo
14
73 kgVila
15
67 kgCasero
16
74 kgGutiérrez
18
71 kgSchleck
19
65 kgGustov
20
64 kgPereiro
21
67 kgPérez
22
61 kgSchmidt
24
73 kgFörster
25
83 kg
Weight (KG) →
Result →
83
58
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | ZBERG Beat | 72 |
2 | BAYARRI Gonzalo | 67 |
3 | ZABEL Erik | 69 |
4 | FLECHA Juan Antonio | 72 |
5 | ENGELS Addy | 64 |
6 | USOV Alexandre | 63 |
7 | TORRENT Carlos | 71 |
8 | WROLICH Peter | 68 |
9 | BELLI Wladimir | 64 |
10 | EKIMOV Viatcheslav | 69 |
11 | RODRÍGUEZ Joaquim | 58 |
12 | LANDALUZE Iñigo | 65 |
13 | BURGOS Nacor | 58 |
14 | HONDO Danilo | 73 |
15 | VILA Francisco Javier | 67 |
16 | CASERO Rafael | 74 |
18 | GUTIÉRREZ José Iván | 71 |
19 | SCHLECK Fränk | 65 |
20 | GUSTOV Volodymyr | 64 |
21 | PEREIRO Óscar | 67 |
22 | PÉREZ Santiago | 61 |
24 | SCHMIDT Torsten | 73 |
25 | FÖRSTER Robert | 83 |