Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 23
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Zberg
1
72 kgZabel
2
69 kgBayarri
3
67 kgUsov
4
63 kgEngels
5
64 kgZanotti
6
70 kgTorrent
7
71 kgEkimov
8
69 kgFlecha
9
72 kgLandaluze
10
65 kgBurgos
11
58 kgBelli
12
64 kgGálvez
13
68 kgRodríguez
14
58 kgCasero
15
74 kgHondo
16
73 kgCommesso
17
66 kgVila
18
67 kgGutiérrez
21
71 kgMayo
22
65 kgGustov
23
64 kgPereiro
24
67 kgMutsaars
25
67 kg
1
72 kgZabel
2
69 kgBayarri
3
67 kgUsov
4
63 kgEngels
5
64 kgZanotti
6
70 kgTorrent
7
71 kgEkimov
8
69 kgFlecha
9
72 kgLandaluze
10
65 kgBurgos
11
58 kgBelli
12
64 kgGálvez
13
68 kgRodríguez
14
58 kgCasero
15
74 kgHondo
16
73 kgCommesso
17
66 kgVila
18
67 kgGutiérrez
21
71 kgMayo
22
65 kgGustov
23
64 kgPereiro
24
67 kgMutsaars
25
67 kg
Weight (KG) →
Result →
74
58
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | ZBERG Beat | 72 |
2 | ZABEL Erik | 69 |
3 | BAYARRI Gonzalo | 67 |
4 | USOV Alexandre | 63 |
5 | ENGELS Addy | 64 |
6 | ZANOTTI Marco | 70 |
7 | TORRENT Carlos | 71 |
8 | EKIMOV Viatcheslav | 69 |
9 | FLECHA Juan Antonio | 72 |
10 | LANDALUZE Iñigo | 65 |
11 | BURGOS Nacor | 58 |
12 | BELLI Wladimir | 64 |
13 | GÁLVEZ Isaac | 68 |
14 | RODRÍGUEZ Joaquim | 58 |
15 | CASERO Rafael | 74 |
16 | HONDO Danilo | 73 |
17 | COMMESSO Salvatore | 66 |
18 | VILA Francisco Javier | 67 |
21 | GUTIÉRREZ José Iván | 71 |
22 | MAYO Iban | 65 |
23 | GUSTOV Volodymyr | 64 |
24 | PEREIRO Óscar | 67 |
25 | MUTSAARS Ronald | 67 |