Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 41
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Zberg
1
72 kgZabel
2
69 kgBayarri
3
67 kgUsov
4
63 kgEngels
5
64 kgFlecha
6
72 kgFrigo
7
66 kgZanotti
8
70 kgTorrent
9
71 kgEkimov
10
69 kgRodríguez
11
58 kgJufré
12
65 kgLandaluze
13
65 kgBurgos
14
58 kgCasero
15
74 kgBelli
16
64 kgLatasa
17
66 kgMayo
18
65 kgPiepoli
19
54 kgGálvez
20
68 kgVila
21
67 kgPérez
22
61 kgHondo
23
73 kgCommesso
24
66 kgRasmussen
25
58 kg
1
72 kgZabel
2
69 kgBayarri
3
67 kgUsov
4
63 kgEngels
5
64 kgFlecha
6
72 kgFrigo
7
66 kgZanotti
8
70 kgTorrent
9
71 kgEkimov
10
69 kgRodríguez
11
58 kgJufré
12
65 kgLandaluze
13
65 kgBurgos
14
58 kgCasero
15
74 kgBelli
16
64 kgLatasa
17
66 kgMayo
18
65 kgPiepoli
19
54 kgGálvez
20
68 kgVila
21
67 kgPérez
22
61 kgHondo
23
73 kgCommesso
24
66 kgRasmussen
25
58 kg
Weight (KG) →
Result →
74
54
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | ZBERG Beat | 72 |
2 | ZABEL Erik | 69 |
3 | BAYARRI Gonzalo | 67 |
4 | USOV Alexandre | 63 |
5 | ENGELS Addy | 64 |
6 | FLECHA Juan Antonio | 72 |
7 | FRIGO Dario | 66 |
8 | ZANOTTI Marco | 70 |
9 | TORRENT Carlos | 71 |
10 | EKIMOV Viatcheslav | 69 |
11 | RODRÍGUEZ Joaquim | 58 |
12 | JUFRÉ Josep | 65 |
13 | LANDALUZE Iñigo | 65 |
14 | BURGOS Nacor | 58 |
15 | CASERO Rafael | 74 |
16 | BELLI Wladimir | 64 |
17 | LATASA David | 66 |
18 | MAYO Iban | 65 |
19 | PIEPOLI Leonardo | 54 |
20 | GÁLVEZ Isaac | 68 |
21 | VILA Francisco Javier | 67 |
22 | PÉREZ Santiago | 61 |
23 | HONDO Danilo | 73 |
24 | COMMESSO Salvatore | 66 |
25 | RASMUSSEN Michael | 58 |