Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 7
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Ramírez
1
61 kgLeipheimer
2
62 kgAtienza
3
60 kgValverde
4
61 kgContador
5
61 kgMartínez
6
70 kgLópez de Munain
8
65 kgRodríguez
9
58 kgFlores
10
74 kgCabello
11
72 kgBayarri
12
67 kgHeras
13
59 kgMayo
14
65 kgSevilla
15
62 kgCalvente
16
55 kgMartín Perdiguero
17
63 kgBasso
18
70 kgVandenbroucke
19
67 kgOsa
20
64 kgLaiseka
22
63 kgGarzelli
24
62 kgZülle
25
72 kg
1
61 kgLeipheimer
2
62 kgAtienza
3
60 kgValverde
4
61 kgContador
5
61 kgMartínez
6
70 kgLópez de Munain
8
65 kgRodríguez
9
58 kgFlores
10
74 kgCabello
11
72 kgBayarri
12
67 kgHeras
13
59 kgMayo
14
65 kgSevilla
15
62 kgCalvente
16
55 kgMartín Perdiguero
17
63 kgBasso
18
70 kgVandenbroucke
19
67 kgOsa
20
64 kgLaiseka
22
63 kgGarzelli
24
62 kgZülle
25
72 kg
Weight (KG) →
Result →
74
55
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | RAMÍREZ Javier | 61 |
2 | LEIPHEIMER Levi | 62 |
3 | ATIENZA Daniel | 60 |
4 | VALVERDE Alejandro | 61 |
5 | CONTADOR Alberto | 61 |
6 | MARTÍNEZ Egoi | 70 |
8 | LÓPEZ DE MUNAIN Alberto | 65 |
9 | RODRÍGUEZ Joaquim | 58 |
10 | FLORES Iker | 74 |
11 | CABELLO Francisco | 72 |
12 | BAYARRI Gonzalo | 67 |
13 | HERAS Roberto | 59 |
14 | MAYO Iban | 65 |
15 | SEVILLA Óscar | 62 |
16 | CALVENTE Manuel | 55 |
17 | MARTÍN PERDIGUERO Miguel Ángel | 63 |
18 | BASSO Ivan | 70 |
19 | VANDENBROUCKE Frank | 67 |
20 | OSA Aitor | 64 |
22 | LAISEKA Roberto | 63 |
24 | GARZELLI Stefano | 62 |
25 | ZÜLLE Alex | 72 |