Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 9
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Martín Perdiguero
1
63 kgJufré
2
65 kgCancellara
3
80 kgZabel
4
69 kgVandenbroucke
5
67 kgZberg
6
72 kgGarzelli
7
62 kgGálvez
8
68 kgValverde
9
61 kgde Groot
10
65 kgLeipheimer
11
62 kgRodríguez
12
58 kgEdo
13
64 kgContador
14
61 kgMayo
16
65 kgArrieta
17
68 kgBasso
18
70 kgKarpets
19
79 kgDekker
20
66 kgHeras
21
59 kgOsa
22
64 kgLelli
23
69 kgMartínez
24
70 kgTorrent
25
71 kg
1
63 kgJufré
2
65 kgCancellara
3
80 kgZabel
4
69 kgVandenbroucke
5
67 kgZberg
6
72 kgGarzelli
7
62 kgGálvez
8
68 kgValverde
9
61 kgde Groot
10
65 kgLeipheimer
11
62 kgRodríguez
12
58 kgEdo
13
64 kgContador
14
61 kgMayo
16
65 kgArrieta
17
68 kgBasso
18
70 kgKarpets
19
79 kgDekker
20
66 kgHeras
21
59 kgOsa
22
64 kgLelli
23
69 kgMartínez
24
70 kgTorrent
25
71 kg
Weight (KG) →
Result →
80
58
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | MARTÍN PERDIGUERO Miguel Ángel | 63 |
2 | JUFRÉ Josep | 65 |
3 | CANCELLARA Fabian | 80 |
4 | ZABEL Erik | 69 |
5 | VANDENBROUCKE Frank | 67 |
6 | ZBERG Beat | 72 |
7 | GARZELLI Stefano | 62 |
8 | GÁLVEZ Isaac | 68 |
9 | VALVERDE Alejandro | 61 |
10 | DE GROOT Bram | 65 |
11 | LEIPHEIMER Levi | 62 |
12 | RODRÍGUEZ Joaquim | 58 |
13 | EDO Ángel | 64 |
14 | CONTADOR Alberto | 61 |
16 | MAYO Iban | 65 |
17 | ARRIETA José Luis | 68 |
18 | BASSO Ivan | 70 |
19 | KARPETS Vladimir | 79 |
20 | DEKKER Erik | 66 |
21 | HERAS Roberto | 59 |
22 | OSA Aitor | 64 |
23 | LELLI Massimiliano | 69 |
24 | MARTÍNEZ Egoi | 70 |
25 | TORRENT Carlos | 71 |