Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 17
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
de la Fuente
2
67 kgContador
3
61 kgJørgensen
4
60 kgHeras
6
59 kgColom
7
71 kgMoos
9
64 kgLópez de Munain
10
65 kgCheula
11
62 kgCaruso
13
60 kgBernabéu
14
66 kgFlorencio
15
59 kgGómez Marchante
16
60 kgPascual Llorente
17
68 kgDanielson
19
58.5 kgFerrío
20
51 kgRubiera
22
69 kgRighi
23
70 kgLaguna
24
61 kgGarcía Quesada
25
63 kg
2
67 kgContador
3
61 kgJørgensen
4
60 kgHeras
6
59 kgColom
7
71 kgMoos
9
64 kgLópez de Munain
10
65 kgCheula
11
62 kgCaruso
13
60 kgBernabéu
14
66 kgFlorencio
15
59 kgGómez Marchante
16
60 kgPascual Llorente
17
68 kgDanielson
19
58.5 kgFerrío
20
51 kgRubiera
22
69 kgRighi
23
70 kgLaguna
24
61 kgGarcía Quesada
25
63 kg
Weight (KG) →
Result →
71
51
2
25
# | Rider | Weight (KG) |
---|---|---|
2 | DE LA FUENTE David | 67 |
3 | CONTADOR Alberto | 61 |
4 | JØRGENSEN René | 60 |
6 | HERAS Roberto | 59 |
7 | COLOM Antonio | 71 |
9 | MOOS Alexandre | 64 |
10 | LÓPEZ DE MUNAIN Alberto | 65 |
11 | CHEULA Giampaolo | 62 |
13 | CARUSO Giampaolo | 60 |
14 | BERNABÉU David | 66 |
15 | FLORENCIO Xavier | 59 |
16 | GÓMEZ MARCHANTE José Ángel | 60 |
17 | PASCUAL LLORENTE Javier | 68 |
19 | DANIELSON Tom | 58.5 |
20 | FERRÍO Jorge | 51 |
22 | RUBIERA José Luis | 69 |
23 | RIGHI Daniele | 70 |
24 | LAGUNA Oscar | 61 |
25 | GARCÍA QUESADA Carlos | 63 |