Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -18.9 * weight + 2104
This means that on average for every extra kilogram weight a rider loses -18.9 positions in the result.
Sciandri
1
75 kgJärmann
3
73 kgZanini
4
80 kgBartoli
5
65 kgFornaciari
990
80 kgFondriest
990
70 kgVanderaerden
990
74 kgLeoni
990
74 kgRichard
990
67 kgLelli
990
69 kgBaldato
990
60 kgPantani
990
58 kgBölts
990
73 kgElli
990
71 kgTchmil
990
75 kgZabel
990
69 kgRebellin
990
63 kgPeron
990
70 kgArgentin
990
66 kgHamburger
990
58 kg
1
75 kgJärmann
3
73 kgZanini
4
80 kgBartoli
5
65 kgFornaciari
990
80 kgFondriest
990
70 kgVanderaerden
990
74 kgLeoni
990
74 kgRichard
990
67 kgLelli
990
69 kgBaldato
990
60 kgPantani
990
58 kgBölts
990
73 kgElli
990
71 kgTchmil
990
75 kgZabel
990
69 kgRebellin
990
63 kgPeron
990
70 kgArgentin
990
66 kgHamburger
990
58 kg
Weight (KG) →
Result →
80
58
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | SCIANDRI Maximilian | 75 |
3 | JÄRMANN Rolf | 73 |
4 | ZANINI Stefano | 80 |
5 | BARTOLI Michele | 65 |
990 | FORNACIARI Paolo | 80 |
990 | FONDRIEST Maurizio | 70 |
990 | VANDERAERDEN Eric | 74 |
990 | LEONI Endrio | 74 |
990 | RICHARD Pascal | 67 |
990 | LELLI Massimiliano | 69 |
990 | BALDATO Fabio | 60 |
990 | PANTANI Marco | 58 |
990 | BÖLTS Udo | 73 |
990 | ELLI Alberto | 71 |
990 | TCHMIL Andrei | 75 |
990 | ZABEL Erik | 69 |
990 | REBELLIN Davide | 63 |
990 | PERON Andrea | 70 |
990 | ARGENTIN Moreno | 66 |
990 | HAMBURGER Bo | 58 |