Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 13
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Bongiorno
1
56 kgPöstlberger
2
70 kgFelline
3
68 kgSprengers
5
60 kgShalunov
6
70 kgVanoverberghe
7
65 kgLutsenko
9
74 kgRabitsch
10
69 kgChernetski
11
63 kgGroßschartner
12
64 kgHelven
13
74 kgSbaragli
15
74 kgRowsell
17
66 kgGalta
18
78 kgKoch
19
69 kgAntunes
20
58 kgJensen
21
67 kgJim
22
66 kgBystrøm
23
73 kgFedi
24
70 kgHuffman
25
71 kgKamyshev
30
67 kgRäim
32
69 kg
1
56 kgPöstlberger
2
70 kgFelline
3
68 kgSprengers
5
60 kgShalunov
6
70 kgVanoverberghe
7
65 kgLutsenko
9
74 kgRabitsch
10
69 kgChernetski
11
63 kgGroßschartner
12
64 kgHelven
13
74 kgSbaragli
15
74 kgRowsell
17
66 kgGalta
18
78 kgKoch
19
69 kgAntunes
20
58 kgJensen
21
67 kgJim
22
66 kgBystrøm
23
73 kgFedi
24
70 kgHuffman
25
71 kgKamyshev
30
67 kgRäim
32
69 kg
Weight (KG) →
Result →
78
56
1
32
# | Rider | Weight (KG) |
---|---|---|
1 | BONGIORNO Francesco Manuel | 56 |
2 | PÖSTLBERGER Lukas | 70 |
3 | FELLINE Fabio | 68 |
5 | SPRENGERS Thomas | 60 |
6 | SHALUNOV Evgeny | 70 |
7 | VANOVERBERGHE Arthur | 65 |
9 | LUTSENKO Alexey | 74 |
10 | RABITSCH Stephan | 69 |
11 | CHERNETSKI Sergei | 63 |
12 | GROßSCHARTNER Felix | 64 |
13 | HELVEN Sander | 74 |
15 | SBARAGLI Kristian | 74 |
17 | ROWSELL Erick | 66 |
18 | GALTA Fredrik Strand | 78 |
19 | KOCH Michel | 69 |
20 | ANTUNES Amaro | 58 |
21 | JENSEN August | 67 |
22 | JIM Songezo | 66 |
23 | BYSTRØM Sven Erik | 73 |
24 | FEDI Andrea | 70 |
25 | HUFFMAN Evan | 71 |
30 | KAMYSHEV Arman | 67 |
32 | RÄIM Mihkel | 69 |