Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 1
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Swift
1
69 kgBelletti
2
72 kgKvasina
3
72 kgMeintjes
4
58 kgBongiorno
5
56 kgCunego
6
58 kgBole
7
69 kgRebellin
8
63 kgKragh Andersen
9
72 kgColli
11
73 kgAgnoli
12
72 kgGavazzi
13
65 kgQuintero
14
63 kgMatysiak
15
71 kgHenao
16
61 kgÁvila
17
61 kgKragh Andersen
18
73 kgPasqualon
19
75 kgSiutsou
20
68 kg
1
69 kgBelletti
2
72 kgKvasina
3
72 kgMeintjes
4
58 kgBongiorno
5
56 kgCunego
6
58 kgBole
7
69 kgRebellin
8
63 kgKragh Andersen
9
72 kgColli
11
73 kgAgnoli
12
72 kgGavazzi
13
65 kgQuintero
14
63 kgMatysiak
15
71 kgHenao
16
61 kgÁvila
17
61 kgKragh Andersen
18
73 kgPasqualon
19
75 kgSiutsou
20
68 kg
Weight (KG) →
Result →
75
56
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | SWIFT Ben | 69 |
2 | BELLETTI Manuel | 72 |
3 | KVASINA Matija | 72 |
4 | MEINTJES Louis | 58 |
5 | BONGIORNO Francesco Manuel | 56 |
6 | CUNEGO Damiano | 58 |
7 | BOLE Grega | 69 |
8 | REBELLIN Davide | 63 |
9 | KRAGH ANDERSEN Asbjørn | 72 |
11 | COLLI Daniele | 73 |
12 | AGNOLI Valerio | 72 |
13 | GAVAZZI Francesco | 65 |
14 | QUINTERO Carlos | 63 |
15 | MATYSIAK Bartłomiej | 71 |
16 | HENAO Sergio | 61 |
17 | ÁVILA Edwin | 61 |
18 | KRAGH ANDERSEN Søren | 73 |
19 | PASQUALON Andrea | 75 |
20 | SIUTSOU Kanstantsin | 68 |