Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 16
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Belletti
1
72 kgSwift
2
69 kgChicchi
3
76 kgKvasina
4
72 kgBole
5
69 kgBongiorno
6
56 kgKragh Andersen
7
72 kgColli
8
73 kgAgnoli
10
72 kgGavazzi
11
65 kgRuffoni
12
70 kgQuintero
13
63 kgMatysiak
14
71 kgÁvila
15
61 kgKragh Andersen
17
73 kgPasqualon
18
75 kgSiutsou
19
68 kg
1
72 kgSwift
2
69 kgChicchi
3
76 kgKvasina
4
72 kgBole
5
69 kgBongiorno
6
56 kgKragh Andersen
7
72 kgColli
8
73 kgAgnoli
10
72 kgGavazzi
11
65 kgRuffoni
12
70 kgQuintero
13
63 kgMatysiak
14
71 kgÁvila
15
61 kgKragh Andersen
17
73 kgPasqualon
18
75 kgSiutsou
19
68 kg
Weight (KG) →
Result →
76
56
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | BELLETTI Manuel | 72 |
2 | SWIFT Ben | 69 |
3 | CHICCHI Francesco | 76 |
4 | KVASINA Matija | 72 |
5 | BOLE Grega | 69 |
6 | BONGIORNO Francesco Manuel | 56 |
7 | KRAGH ANDERSEN Asbjørn | 72 |
8 | COLLI Daniele | 73 |
10 | AGNOLI Valerio | 72 |
11 | GAVAZZI Francesco | 65 |
12 | RUFFONI Nicola | 70 |
13 | QUINTERO Carlos | 63 |
14 | MATYSIAK Bartłomiej | 71 |
15 | ÁVILA Edwin | 61 |
17 | KRAGH ANDERSEN Søren | 73 |
18 | PASQUALON Andrea | 75 |
19 | SIUTSOU Kanstantsin | 68 |