Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 5
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Celano
1
65 kgFeillu
2
69 kgCalmejane
3
70 kgTorres
4
56 kgGavazzi
5
65 kgFilosi
6
70 kgBernal
7
60 kgPozdnyakov
8
67 kgScartezzini
9
63 kgRosón
10
62 kgSchönberger
11
64 kgIrisarri
12
66 kgKudus
13
58 kgCattaneo
14
67 kgButs
15
68 kgFoliforov
17
61 kgSlagter
19
57 kgAmezqueta
20
63 kgJanse van Rensburg
21
74 kgRumac
23
71 kg
1
65 kgFeillu
2
69 kgCalmejane
3
70 kgTorres
4
56 kgGavazzi
5
65 kgFilosi
6
70 kgBernal
7
60 kgPozdnyakov
8
67 kgScartezzini
9
63 kgRosón
10
62 kgSchönberger
11
64 kgIrisarri
12
66 kgKudus
13
58 kgCattaneo
14
67 kgButs
15
68 kgFoliforov
17
61 kgSlagter
19
57 kgAmezqueta
20
63 kgJanse van Rensburg
21
74 kgRumac
23
71 kg
Weight (KG) →
Result →
74
56
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | CELANO Danilo | 65 |
2 | FEILLU Brice | 69 |
3 | CALMEJANE Lilian | 70 |
4 | TORRES Rodolfo Andrés | 56 |
5 | GAVAZZI Francesco | 65 |
6 | FILOSI Iuri | 70 |
7 | BERNAL Egan | 60 |
8 | POZDNYAKOV Kirill | 67 |
9 | SCARTEZZINI Michele | 63 |
10 | ROSÓN Jaime | 62 |
11 | SCHÖNBERGER Sebastian | 64 |
12 | IRISARRI Jon | 66 |
13 | KUDUS Merhawi | 58 |
14 | CATTANEO Mattia | 67 |
15 | BUTS Vitaliy | 68 |
17 | FOLIFOROV Alexander | 61 |
19 | SLAGTER Tom-Jelte | 57 |
20 | AMEZQUETA Julen | 63 |
21 | JANSE VAN RENSBURG Reinardt | 74 |
23 | RUMAC Josip | 71 |