Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 45
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Feillu
1
69 kgCelano
2
65 kgPozdnyakov
3
67 kgScartezzini
4
63 kgSchönberger
5
64 kgFilosi
6
70 kgBernal
7
60 kgIrisarri
8
66 kgGavazzi
9
65 kgButs
10
68 kgCalmejane
12
70 kgRosón
13
62 kgCattaneo
14
67 kgTorres
15
56 kgPichon
16
69 kgSlagter
17
57 kgAmezqueta
18
63 kgFoliforov
20
61 kg
1
69 kgCelano
2
65 kgPozdnyakov
3
67 kgScartezzini
4
63 kgSchönberger
5
64 kgFilosi
6
70 kgBernal
7
60 kgIrisarri
8
66 kgGavazzi
9
65 kgButs
10
68 kgCalmejane
12
70 kgRosón
13
62 kgCattaneo
14
67 kgTorres
15
56 kgPichon
16
69 kgSlagter
17
57 kgAmezqueta
18
63 kgFoliforov
20
61 kg
Weight (KG) →
Result →
70
56
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | FEILLU Brice | 69 |
2 | CELANO Danilo | 65 |
3 | POZDNYAKOV Kirill | 67 |
4 | SCARTEZZINI Michele | 63 |
5 | SCHÖNBERGER Sebastian | 64 |
6 | FILOSI Iuri | 70 |
7 | BERNAL Egan | 60 |
8 | IRISARRI Jon | 66 |
9 | GAVAZZI Francesco | 65 |
10 | BUTS Vitaliy | 68 |
12 | CALMEJANE Lilian | 70 |
13 | ROSÓN Jaime | 62 |
14 | CATTANEO Mattia | 67 |
15 | TORRES Rodolfo Andrés | 56 |
16 | PICHON Laurent | 69 |
17 | SLAGTER Tom-Jelte | 57 |
18 | AMEZQUETA Julen | 63 |
20 | FOLIFOROV Alexander | 61 |