Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 17
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Skujiņš
1
70 kgPichon
2
69 kgBoudat
3
70 kgCalmejane
4
70 kgBanaszek
5
75 kgBusato
6
67 kgViviani
7
67 kgClarke
8
81 kgRosón
9
62 kgFonseca
10
56 kgMalucelli
11
68 kgCanola
12
66 kgSepúlveda
13
59 kgBernal
14
60 kgBouet
15
67 kgSisr
16
72 kgPozdnyakov
17
67 kgGibbons
18
70 kgBazhkou
19
65 kgFortin
20
78 kgOien
21
68 kg
1
70 kgPichon
2
69 kgBoudat
3
70 kgCalmejane
4
70 kgBanaszek
5
75 kgBusato
6
67 kgViviani
7
67 kgClarke
8
81 kgRosón
9
62 kgFonseca
10
56 kgMalucelli
11
68 kgCanola
12
66 kgSepúlveda
13
59 kgBernal
14
60 kgBouet
15
67 kgSisr
16
72 kgPozdnyakov
17
67 kgGibbons
18
70 kgBazhkou
19
65 kgFortin
20
78 kgOien
21
68 kg
Weight (KG) →
Result →
81
56
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | SKUJIŅŠ Toms | 70 |
2 | PICHON Laurent | 69 |
3 | BOUDAT Thomas | 70 |
4 | CALMEJANE Lilian | 70 |
5 | BANASZEK Alan | 75 |
6 | BUSATO Matteo | 67 |
7 | VIVIANI Elia | 67 |
8 | CLARKE Will | 81 |
9 | ROSÓN Jaime | 62 |
10 | FONSECA Armindo | 56 |
11 | MALUCELLI Matteo | 68 |
12 | CANOLA Marco | 66 |
13 | SEPÚLVEDA Eduardo | 59 |
14 | BERNAL Egan | 60 |
15 | BOUET Maxime | 67 |
16 | SISR František | 72 |
17 | POZDNYAKOV Kirill | 67 |
18 | GIBBONS Ryan | 70 |
19 | BAZHKOU Stanislau | 65 |
20 | FORTIN Filippo | 78 |
21 | OIEN Justin | 68 |