Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 25
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Lawless
1
72 kgMollema
2
64 kgEenkhoorn
3
72 kgRosa
4
65 kgCarapaz
5
62 kgCraddock
6
69 kgCiccone
8
58 kgBallerini
9
71 kgRota
10
62 kgMartin
11
55 kgLiepiņš
12
67 kgBouwman
13
60 kgFinetto
14
62 kgCanola
15
66 kgSosa
16
52 kgFelline
17
68 kgHamilton
19
71 kgFedeli
21
65 kg
1
72 kgMollema
2
64 kgEenkhoorn
3
72 kgRosa
4
65 kgCarapaz
5
62 kgCraddock
6
69 kgCiccone
8
58 kgBallerini
9
71 kgRota
10
62 kgMartin
11
55 kgLiepiņš
12
67 kgBouwman
13
60 kgFinetto
14
62 kgCanola
15
66 kgSosa
16
52 kgFelline
17
68 kgHamilton
19
71 kgFedeli
21
65 kg
Weight (KG) →
Result →
72
52
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | LAWLESS Chris | 72 |
2 | MOLLEMA Bauke | 64 |
3 | EENKHOORN Pascal | 72 |
4 | ROSA Diego | 65 |
5 | CARAPAZ Richard | 62 |
6 | CRADDOCK Lawson | 69 |
8 | CICCONE Giulio | 58 |
9 | BALLERINI Davide | 71 |
10 | ROTA Lorenzo | 62 |
11 | MARTIN Guillaume | 55 |
12 | LIEPIŅŠ Emīls | 67 |
13 | BOUWMAN Koen | 60 |
14 | FINETTO Mauro | 62 |
15 | CANOLA Marco | 66 |
16 | SOSA Iván Ramiro | 52 |
17 | FELLINE Fabio | 68 |
19 | HAMILTON Lucas | 71 |
21 | FEDELI Alessandro | 65 |