Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 33
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Vingegaard
1
58 kgHayter
2
70 kgSchultz
3
68 kgArchbold
4
79 kgHonoré
5
68 kgRomo
6
70 kgCavendish
7
70 kgHermans
8
72 kgVansevenant
9
60 kgAyuso
10
65 kgTesfatsion
11
60 kgMosca
12
65 kgVan Wilder
13
64 kgLastra
14
64 kgAular
15
65 kgAlbanese
16
70 kgBrenner
17
59 kgGabburo
18
63 kg
1
58 kgHayter
2
70 kgSchultz
3
68 kgArchbold
4
79 kgHonoré
5
68 kgRomo
6
70 kgCavendish
7
70 kgHermans
8
72 kgVansevenant
9
60 kgAyuso
10
65 kgTesfatsion
11
60 kgMosca
12
65 kgVan Wilder
13
64 kgLastra
14
64 kgAular
15
65 kgAlbanese
16
70 kgBrenner
17
59 kgGabburo
18
63 kg
Weight (KG) →
Result →
79
58
1
18
# | Rider | Weight (KG) |
---|---|---|
1 | VINGEGAARD Jonas | 58 |
2 | HAYTER Ethan | 70 |
3 | SCHULTZ Nick | 68 |
4 | ARCHBOLD Shane | 79 |
5 | HONORÉ Mikkel Frølich | 68 |
6 | ROMO Javier | 70 |
7 | CAVENDISH Mark | 70 |
8 | HERMANS Ben | 72 |
9 | VANSEVENANT Mauri | 60 |
10 | AYUSO Juan | 65 |
11 | TESFATSION Natnael | 60 |
12 | MOSCA Jacopo | 65 |
13 | VAN WILDER Ilan | 64 |
14 | LASTRA Jonathan | 64 |
15 | AULAR Orluis | 65 |
16 | ALBANESE Vincenzo | 70 |
17 | BRENNER Marco | 59 |
18 | GABBURO Davide | 63 |