Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 19
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Hayter
1
70 kgVingegaard
2
58 kgSchultz
3
68 kgMareczko
4
67 kgRomo
5
70 kgSosa
6
52 kgArchbold
7
79 kgCavendish
8
70 kgHermans
9
72 kgVansevenant
10
60 kgMayrhofer
11
70 kgTesfatsion
12
60 kgMosca
13
65 kgAyuso
14
65 kgAular
15
65 kgAlbanese
16
70 kgVan Wilder
18
64 kgRocchetta
19
70 kgBrenner
20
59 kgGabburo
21
63 kg
1
70 kgVingegaard
2
58 kgSchultz
3
68 kgMareczko
4
67 kgRomo
5
70 kgSosa
6
52 kgArchbold
7
79 kgCavendish
8
70 kgHermans
9
72 kgVansevenant
10
60 kgMayrhofer
11
70 kgTesfatsion
12
60 kgMosca
13
65 kgAyuso
14
65 kgAular
15
65 kgAlbanese
16
70 kgVan Wilder
18
64 kgRocchetta
19
70 kgBrenner
20
59 kgGabburo
21
63 kg
Weight (KG) →
Result →
79
52
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | HAYTER Ethan | 70 |
2 | VINGEGAARD Jonas | 58 |
3 | SCHULTZ Nick | 68 |
4 | MARECZKO Jakub | 67 |
5 | ROMO Javier | 70 |
6 | SOSA Iván Ramiro | 52 |
7 | ARCHBOLD Shane | 79 |
8 | CAVENDISH Mark | 70 |
9 | HERMANS Ben | 72 |
10 | VANSEVENANT Mauri | 60 |
11 | MAYRHOFER Marius | 70 |
12 | TESFATSION Natnael | 60 |
13 | MOSCA Jacopo | 65 |
14 | AYUSO Juan | 65 |
15 | AULAR Orluis | 65 |
16 | ALBANESE Vincenzo | 70 |
18 | VAN WILDER Ilan | 64 |
19 | ROCCHETTA Cristian | 70 |
20 | BRENNER Marco | 59 |
21 | GABBURO Davide | 63 |