Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 13
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Schmid
1
70 kgHealy
2
65 kgPozzovivo
3
53 kgShaw
4
63 kgQuinn
5
67 kgCavagna
6
78 kgGuerin
7
64 kgPadun
9
67 kgEngelhardt
10
68 kgTesfatsion
11
60 kgPluimers
12
67 kgStaune-Mittet
13
67 kgBrambilla
15
57 kgScaroni
16
63 kgGabburo
17
63 kgLipowitz
18
68 kgVader
19
63 kgStewart
20
70 kg
1
70 kgHealy
2
65 kgPozzovivo
3
53 kgShaw
4
63 kgQuinn
5
67 kgCavagna
6
78 kgGuerin
7
64 kgPadun
9
67 kgEngelhardt
10
68 kgTesfatsion
11
60 kgPluimers
12
67 kgStaune-Mittet
13
67 kgBrambilla
15
57 kgScaroni
16
63 kgGabburo
17
63 kgLipowitz
18
68 kgVader
19
63 kgStewart
20
70 kg
Weight (KG) →
Result →
78
53
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | SCHMID Mauro | 70 |
2 | HEALY Ben | 65 |
3 | POZZOVIVO Domenico | 53 |
4 | SHAW James | 63 |
5 | QUINN Sean | 67 |
6 | CAVAGNA Rémi | 78 |
7 | GUERIN Alexis | 64 |
9 | PADUN Mark | 67 |
10 | ENGELHARDT Felix | 68 |
11 | TESFATSION Natnael | 60 |
12 | PLUIMERS Rick | 67 |
13 | STAUNE-MITTET Johannes | 67 |
15 | BRAMBILLA Gianluca | 57 |
16 | SCARONI Christian | 63 |
17 | GABBURO Davide | 63 |
18 | LIPOWITZ Florian | 68 |
19 | VADER Milan | 63 |
20 | STEWART Mark | 70 |