Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 3
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Guerin
1
64 kgTeugels
2
64 kgRestrepo
4
73 kgHealy
5
65 kgGarosio
6
58 kgLipowitz
7
68 kgFancellu
8
62 kgStojnić
9
73 kgCovili
10
58 kgKnox
11
58 kgZwiehoff
12
61 kgCavagna
13
78 kgPeyskens
14
69 kgSchmid
15
70 kgShaw
16
63 kgCraddock
17
69 kgGhebreigzabhier
20
68 kgde Bod
22
66 kgStaune-Mittet
23
67 kgScaroni
24
63 kgCharrin
25
67 kgStewart
26
70 kg
1
64 kgTeugels
2
64 kgRestrepo
4
73 kgHealy
5
65 kgGarosio
6
58 kgLipowitz
7
68 kgFancellu
8
62 kgStojnić
9
73 kgCovili
10
58 kgKnox
11
58 kgZwiehoff
12
61 kgCavagna
13
78 kgPeyskens
14
69 kgSchmid
15
70 kgShaw
16
63 kgCraddock
17
69 kgGhebreigzabhier
20
68 kgde Bod
22
66 kgStaune-Mittet
23
67 kgScaroni
24
63 kgCharrin
25
67 kgStewart
26
70 kg
Weight (KG) →
Result →
78
58
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | GUERIN Alexis | 64 |
2 | TEUGELS Lennert | 64 |
4 | RESTREPO Jhonatan | 73 |
5 | HEALY Ben | 65 |
6 | GAROSIO Andrea | 58 |
7 | LIPOWITZ Florian | 68 |
8 | FANCELLU Alessandro | 62 |
9 | STOJNIĆ Veljko | 73 |
10 | COVILI Luca | 58 |
11 | KNOX James | 58 |
12 | ZWIEHOFF Ben | 61 |
13 | CAVAGNA Rémi | 78 |
14 | PEYSKENS Dimitri | 69 |
15 | SCHMID Mauro | 70 |
16 | SHAW James | 63 |
17 | CRADDOCK Lawson | 69 |
20 | GHEBREIGZABHIER Amanuel | 68 |
22 | DE BOD Stefan | 66 |
23 | STAUNE-MITTET Johannes | 67 |
24 | SCARONI Christian | 63 |
25 | CHARRIN Aloïs | 67 |
26 | STEWART Mark | 70 |