Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.1 * weight - 47
This means that on average for every extra kilogram weight a rider loses 1.1 positions in the result.
Ryan
1
56 kgDe Pretto
2
58 kgBerckmoes
3
61 kgPellizzari
5
66 kgStaune-Mittet
6
67 kgWidar
8
54 kgPescador
10
60 kgvan Bekkum
18
62 kgNovák
21
64 kgBrenner
23
59 kgGlivar
25
64 kgRojas
26
64 kgRouland
29
55 kgEpis
37
64 kgGarzón
39
60 kgSegaert
40
79 kgFoldager
42
69 kgKingston
47
76 kgKamada
48
58 kg
1
56 kgDe Pretto
2
58 kgBerckmoes
3
61 kgPellizzari
5
66 kgStaune-Mittet
6
67 kgWidar
8
54 kgPescador
10
60 kgvan Bekkum
18
62 kgNovák
21
64 kgBrenner
23
59 kgGlivar
25
64 kgRojas
26
64 kgRouland
29
55 kgEpis
37
64 kgGarzón
39
60 kgSegaert
40
79 kgFoldager
42
69 kgKingston
47
76 kgKamada
48
58 kg
Weight (KG) →
Result →
79
54
1
48
# | Rider | Weight (KG) |
---|---|---|
1 | RYAN Archie | 56 |
2 | DE PRETTO Davide | 58 |
3 | BERCKMOES Jenno | 61 |
5 | PELLIZZARI Giulio | 66 |
6 | STAUNE-MITTET Johannes | 67 |
8 | WIDAR Jarno | 54 |
10 | PESCADOR Diego | 60 |
18 | VAN BEKKUM Darren | 62 |
21 | NOVÁK Pavel | 64 |
23 | BRENNER Marco | 59 |
25 | GLIVAR Gal | 64 |
26 | ROJAS Brandon Alejandro | 64 |
29 | ROULAND Louis | 55 |
37 | EPIS Giosuè | 64 |
39 | GARZÓN Óscar Santiago | 60 |
40 | SEGAERT Alec | 79 |
42 | FOLDAGER Anders | 69 |
47 | KINGSTON Matthew | 76 |
48 | KAMADA Koki | 58 |