Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 19
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Cabedo
1
57 kgVine
2
69 kgEenkhoorn
3
72 kgSheffield
4
73 kgDouble
5
56 kgTulett
6
56 kgCamprubí
7
69 kgBurgaudeau
8
61 kgFancellu
11
62 kgArrieta
13
64 kgVansevenant
14
60 kgVan Hautegem
15
64 kgHerzog
18
74 kgCovi
19
66 kgMajka
20
62 kgKonychev
21
76 kgOliveira
22
68 kgDonovan
25
70 kgUlissi
26
63 kgWidar
28
54 kgRivera
30
60 kgFinn
31
63 kg
1
57 kgVine
2
69 kgEenkhoorn
3
72 kgSheffield
4
73 kgDouble
5
56 kgTulett
6
56 kgCamprubí
7
69 kgBurgaudeau
8
61 kgFancellu
11
62 kgArrieta
13
64 kgVansevenant
14
60 kgVan Hautegem
15
64 kgHerzog
18
74 kgCovi
19
66 kgMajka
20
62 kgKonychev
21
76 kgOliveira
22
68 kgDonovan
25
70 kgUlissi
26
63 kgWidar
28
54 kgRivera
30
60 kgFinn
31
63 kg
Weight (KG) →
Result →
76
54
1
31
# | Rider | Weight (KG) |
---|---|---|
1 | CABEDO Marc | 57 |
2 | VINE Jay | 69 |
3 | EENKHOORN Pascal | 72 |
4 | SHEFFIELD Magnus | 73 |
5 | DOUBLE Paul | 56 |
6 | TULETT Ben | 56 |
7 | CAMPRUBÍ Marcel | 69 |
8 | BURGAUDEAU Mathieu | 61 |
11 | FANCELLU Alessandro | 62 |
13 | ARRIETA Igor | 64 |
14 | VANSEVENANT Mauri | 60 |
15 | VAN HAUTEGEM Leander | 64 |
18 | HERZOG Emil | 74 |
19 | COVI Alessandro | 66 |
20 | MAJKA Rafał | 62 |
21 | KONYCHEV Alexander | 76 |
22 | OLIVEIRA Ivo | 68 |
25 | DONOVAN Mark | 70 |
26 | ULISSI Diego | 63 |
28 | WIDAR Jarno | 54 |
30 | RIVERA Brandon Smith | 60 |
31 | FINN Lorenzo | 63 |