Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight + 22
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Vasilyev
1
70 kgDemoitié
4
69 kgTamouridis
8
70 kgPichetta
11
56 kgTopchanyuk
20
65 kgBouglas
21
71 kgTzortzakis
32
80 kgVasylyuk
37
65 kgDron
39
72 kgDernies
42
68 kgZoidl
55
63 kgPetrov
67
66 kgRabitsch
82
69 kgGraf
91
72 kgRiška
98
73 kgGerganov
99
60 kgGrosu
102
68 kgLovassy
119
71 kg
1
70 kgDemoitié
4
69 kgTamouridis
8
70 kgPichetta
11
56 kgTopchanyuk
20
65 kgBouglas
21
71 kgTzortzakis
32
80 kgVasylyuk
37
65 kgDron
39
72 kgDernies
42
68 kgZoidl
55
63 kgPetrov
67
66 kgRabitsch
82
69 kgGraf
91
72 kgRiška
98
73 kgGerganov
99
60 kgGrosu
102
68 kgLovassy
119
71 kg
Weight (KG) →
Result →
80
56
1
119
# | Rider | Weight (KG) |
---|---|---|
1 | VASILYEV Maksym | 70 |
4 | DEMOITIÉ Antoine | 69 |
8 | TAMOURIDIS Ioannis | 70 |
11 | PICHETTA Ricardo | 56 |
20 | TOPCHANYUK Artem | 65 |
21 | BOUGLAS Georgios | 71 |
32 | TZORTZAKIS Polychronis | 80 |
37 | VASYLYUK Andriy | 65 |
39 | DRON Boris | 72 |
42 | DERNIES Tom | 68 |
55 | ZOIDL Riccardo | 63 |
67 | PETROV Daniel Bogomilov | 66 |
82 | RABITSCH Stephan | 69 |
91 | GRAF Andreas | 72 |
98 | RIŠKA Martin | 73 |
99 | GERGANOV Evgeni | 60 |
102 | GROSU Eduard-Michael | 68 |
119 | LOVASSY Krisztián | 71 |