Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.9 * weight - 27
This means that on average for every extra kilogram weight a rider loses 0.9 positions in the result.
Tamouridis
2
70 kgVasylyuk
4
65 kgTopchanyuk
5
65 kgGraf
11
72 kgZoidl
12
63 kgLovassy
16
71 kgDron
18
72 kgDemoitié
21
69 kgBouglas
22
71 kgPöstlberger
26
70 kgRabitsch
29
69 kgDernies
37
68 kgVasilyev
38
70 kgPichetta
43
56 kgGerganov
75
60 kgPetrov
80
66 kgTzortzakis
116
80 kg
2
70 kgVasylyuk
4
65 kgTopchanyuk
5
65 kgGraf
11
72 kgZoidl
12
63 kgLovassy
16
71 kgDron
18
72 kgDemoitié
21
69 kgBouglas
22
71 kgPöstlberger
26
70 kgRabitsch
29
69 kgDernies
37
68 kgVasilyev
38
70 kgPichetta
43
56 kgGerganov
75
60 kgPetrov
80
66 kgTzortzakis
116
80 kg
Weight (KG) →
Result →
80
56
2
116
# | Rider | Weight (KG) |
---|---|---|
2 | TAMOURIDIS Ioannis | 70 |
4 | VASYLYUK Andriy | 65 |
5 | TOPCHANYUK Artem | 65 |
11 | GRAF Andreas | 72 |
12 | ZOIDL Riccardo | 63 |
16 | LOVASSY Krisztián | 71 |
18 | DRON Boris | 72 |
21 | DEMOITIÉ Antoine | 69 |
22 | BOUGLAS Georgios | 71 |
26 | PÖSTLBERGER Lukas | 70 |
29 | RABITSCH Stephan | 69 |
37 | DERNIES Tom | 68 |
38 | VASILYEV Maksym | 70 |
43 | PICHETTA Ricardo | 56 |
75 | GERGANOV Evgeni | 60 |
80 | PETROV Daniel Bogomilov | 66 |
116 | TZORTZAKIS Polychronis | 80 |