Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.5 * weight - 56
This means that on average for every extra kilogram weight a rider loses 1.5 positions in the result.
de la Parte
1
64 kgKvasina
2
72 kgTopchanyuk
3
65 kgTamouridis
4
70 kgPöll
9
60 kgKasa
11
72 kgGerganov
16
60 kgJovanović
19
60 kgTanovițchii
38
73 kgMeeusen
46
62 kgGyurov
52
75 kgMalaguti
55
67 kgThill
57
73 kgStević
59
66 kgLovassy
60
71 kgPrevar
64
64 kgAdams
69
63 kgvan Kessel
98
68 kgBakker
100
74.5 kgSchäfer
119
66 kg
1
64 kgKvasina
2
72 kgTopchanyuk
3
65 kgTamouridis
4
70 kgPöll
9
60 kgKasa
11
72 kgGerganov
16
60 kgJovanović
19
60 kgTanovițchii
38
73 kgMeeusen
46
62 kgGyurov
52
75 kgMalaguti
55
67 kgThill
57
73 kgStević
59
66 kgLovassy
60
71 kgPrevar
64
64 kgAdams
69
63 kgvan Kessel
98
68 kgBakker
100
74.5 kgSchäfer
119
66 kg
Weight (KG) →
Result →
75
60
1
119
# | Rider | Weight (KG) |
---|---|---|
1 | DE LA PARTE Víctor | 64 |
2 | KVASINA Matija | 72 |
3 | TOPCHANYUK Artem | 65 |
4 | TAMOURIDIS Ioannis | 70 |
9 | PÖLL Stefan | 60 |
11 | KASA Gabor | 72 |
16 | GERGANOV Evgeni | 60 |
19 | JOVANOVIĆ Nebojša | 60 |
38 | TANOVIȚCHII Nicolae | 73 |
46 | MEEUSEN Tom | 62 |
52 | GYUROV Spas | 75 |
55 | MALAGUTI Alessandro | 67 |
57 | THILL Tom | 73 |
59 | STEVIĆ Ivan | 66 |
60 | LOVASSY Krisztián | 71 |
64 | PREVAR Oleksandr | 64 |
69 | ADAMS Joeri | 63 |
98 | VAN KESSEL Corné | 68 |
100 | BAKKER Dennis | 74.5 |
119 | SCHÄFER Timo | 66 |