Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 97
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Tamouridis
2
70 kgAdams
3
63 kgvan Kessel
5
68 kgPeeters
6
75 kgStević
10
66 kgMalaguti
27
67 kgLovassy
37
71 kgde la Parte
39
64 kgGerganov
48
60 kgPrevar
51
64 kgBakker
56
74.5 kgGyurov
62
75 kgThill
82
73 kgTanovițchii
88
73 kgKasa
96
72 kgJovanović
97
60 kgKvasina
103
72 kgPöll
104
60 kgTopchanyuk
107
65 kgSchäfer
122
66 kg
2
70 kgAdams
3
63 kgvan Kessel
5
68 kgPeeters
6
75 kgStević
10
66 kgMalaguti
27
67 kgLovassy
37
71 kgde la Parte
39
64 kgGerganov
48
60 kgPrevar
51
64 kgBakker
56
74.5 kgGyurov
62
75 kgThill
82
73 kgTanovițchii
88
73 kgKasa
96
72 kgJovanović
97
60 kgKvasina
103
72 kgPöll
104
60 kgTopchanyuk
107
65 kgSchäfer
122
66 kg
Weight (KG) →
Result →
75
60
2
122
# | Rider | Weight (KG) |
---|---|---|
2 | TAMOURIDIS Ioannis | 70 |
3 | ADAMS Joeri | 63 |
5 | VAN KESSEL Corné | 68 |
6 | PEETERS Rob | 75 |
10 | STEVIĆ Ivan | 66 |
27 | MALAGUTI Alessandro | 67 |
37 | LOVASSY Krisztián | 71 |
39 | DE LA PARTE Víctor | 64 |
48 | GERGANOV Evgeni | 60 |
51 | PREVAR Oleksandr | 64 |
56 | BAKKER Dennis | 74.5 |
62 | GYUROV Spas | 75 |
82 | THILL Tom | 73 |
88 | TANOVIȚCHII Nicolae | 73 |
96 | KASA Gabor | 72 |
97 | JOVANOVIĆ Nebojša | 60 |
103 | KVASINA Matija | 72 |
104 | PÖLL Stefan | 60 |
107 | TOPCHANYUK Artem | 65 |
122 | SCHÄFER Timo | 66 |