Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.1 * weight - 96
This means that on average for every extra kilogram weight a rider loses 2.1 positions in the result.
de la Parte
1
64 kgKvasina
2
72 kgTopchanyuk
3
65 kgTamouridis
4
70 kgPöll
10
60 kgStević
15
66 kgMalaguti
16
67 kgJovanović
18
60 kgKasa
21
72 kgGerganov
38
60 kgTanovițchii
48
73 kgLovassy
50
71 kgMeeusen
70
62 kgPrevar
76
64 kgAdams
84
63 kgThill
85
73 kgvan Kessel
87
68 kgGyurov
88
75 kgBakker
121
74.5 kgSchäfer
129
66 kg
1
64 kgKvasina
2
72 kgTopchanyuk
3
65 kgTamouridis
4
70 kgPöll
10
60 kgStević
15
66 kgMalaguti
16
67 kgJovanović
18
60 kgKasa
21
72 kgGerganov
38
60 kgTanovițchii
48
73 kgLovassy
50
71 kgMeeusen
70
62 kgPrevar
76
64 kgAdams
84
63 kgThill
85
73 kgvan Kessel
87
68 kgGyurov
88
75 kgBakker
121
74.5 kgSchäfer
129
66 kg
Weight (KG) →
Result →
75
60
1
129
# | Rider | Weight (KG) |
---|---|---|
1 | DE LA PARTE Víctor | 64 |
2 | KVASINA Matija | 72 |
3 | TOPCHANYUK Artem | 65 |
4 | TAMOURIDIS Ioannis | 70 |
10 | PÖLL Stefan | 60 |
15 | STEVIĆ Ivan | 66 |
16 | MALAGUTI Alessandro | 67 |
18 | JOVANOVIĆ Nebojša | 60 |
21 | KASA Gabor | 72 |
38 | GERGANOV Evgeni | 60 |
48 | TANOVIȚCHII Nicolae | 73 |
50 | LOVASSY Krisztián | 71 |
70 | MEEUSEN Tom | 62 |
76 | PREVAR Oleksandr | 64 |
84 | ADAMS Joeri | 63 |
85 | THILL Tom | 73 |
87 | VAN KESSEL Corné | 68 |
88 | GYUROV Spas | 75 |
121 | BAKKER Dennis | 74.5 |
129 | SCHÄFER Timo | 66 |