Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 7
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Topchanyuk
2
65 kgde la Parte
2
64 kgTamouridis
2
70 kgKvasina
3
72 kgLovassy
3
71 kgGerganov
3
60 kgAdams
5
63 kgMeeusen
5
62 kgGyurov
6
75 kgStević
7
66 kgJovanović
7
60 kgKasa
7
72 kgThill
10
73 kgPöll
12
60 kgBakker
16
74.5 kgTanovițchii
20
73 kgMalaguti
23
67 kgSchäfer
24
66 kg
2
65 kgde la Parte
2
64 kgTamouridis
2
70 kgKvasina
3
72 kgLovassy
3
71 kgGerganov
3
60 kgAdams
5
63 kgMeeusen
5
62 kgGyurov
6
75 kgStević
7
66 kgJovanović
7
60 kgKasa
7
72 kgThill
10
73 kgPöll
12
60 kgBakker
16
74.5 kgTanovițchii
20
73 kgMalaguti
23
67 kgSchäfer
24
66 kg
Weight (KG) →
Result →
75
60
2
24
# | Rider | Weight (KG) |
---|---|---|
2 | TOPCHANYUK Artem | 65 |
2 | DE LA PARTE Víctor | 64 |
2 | TAMOURIDIS Ioannis | 70 |
3 | KVASINA Matija | 72 |
3 | LOVASSY Krisztián | 71 |
3 | GERGANOV Evgeni | 60 |
5 | ADAMS Joeri | 63 |
5 | MEEUSEN Tom | 62 |
6 | GYUROV Spas | 75 |
7 | STEVIĆ Ivan | 66 |
7 | JOVANOVIĆ Nebojša | 60 |
7 | KASA Gabor | 72 |
10 | THILL Tom | 73 |
12 | PÖLL Stefan | 60 |
16 | BAKKER Dennis | 74.5 |
20 | TANOVIȚCHII Nicolae | 73 |
23 | MALAGUTI Alessandro | 67 |
24 | SCHÄFER Timo | 66 |