Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 72
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Bates
3
69 kgValen
7
61 kgTeutenberg
8
64 kgCappellotto
12
60 kgMelchers
16
59 kgvan Rooy-Vink
18
57 kgValen
20
62 kgDoppmann
23
55 kgBronzini
25
54 kgBecker
32
64 kgCarrara
39
64 kgBeltman
41
68 kgVisser
45
59 kgGunnewijk
47
67 kgVžesniauskaitė
48
57 kgLindberg
50
63 kgFernandes Silva
52
52 kgKoedooder
55
69 kgMatusiak
61
58 kgBrzeźna
79
56 kg
3
69 kgValen
7
61 kgTeutenberg
8
64 kgCappellotto
12
60 kgMelchers
16
59 kgvan Rooy-Vink
18
57 kgValen
20
62 kgDoppmann
23
55 kgBronzini
25
54 kgBecker
32
64 kgCarrara
39
64 kgBeltman
41
68 kgVisser
45
59 kgGunnewijk
47
67 kgVžesniauskaitė
48
57 kgLindberg
50
63 kgFernandes Silva
52
52 kgKoedooder
55
69 kgMatusiak
61
58 kgBrzeźna
79
56 kg
Weight (KG) →
Result →
69
52
3
79
# | Rider | Weight (KG) |
---|---|---|
3 | BATES Katherine | 69 |
7 | VALEN Monica | 61 |
8 | TEUTENBERG Ina-Yoko | 64 |
12 | CAPPELLOTTO Alessandra | 60 |
16 | MELCHERS Mirjam | 59 |
18 | VAN ROOY-VINK Elsbeth | 57 |
20 | VALEN Anita | 62 |
23 | DOPPMANN Priska | 55 |
25 | BRONZINI Giorgia | 54 |
32 | BECKER Charlotte | 64 |
39 | CARRARA Vera | 64 |
41 | BELTMAN Chantal | 68 |
45 | VISSER Adrie | 59 |
47 | GUNNEWIJK Loes | 67 |
48 | VŽESNIAUSKAITĖ Modesta | 57 |
50 | LINDBERG Madeleine | 63 |
52 | FERNANDES SILVA Janildes | 52 |
55 | KOEDOODER Vera | 69 |
61 | MATUSIAK Bogumiła | 58 |
79 | BRZEŹNA Paulina | 56 |