Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.2 * weight - 31
This means that on average for every extra kilogram weight a rider loses 1.2 positions in the result.
Teutenberg
2
64 kgValen
3
62 kgLjungskog
6
57 kgCooke
8
58 kgLindberg
9
63 kgBeltman
10
68 kgZabelinskaya
12
52 kgMelchers
16
59 kgGunnewijk
21
67 kgDoppmann
36
55 kgVisser
40
59 kgWild
44
75 kgArndt
45
59 kgMatusiak
47
58 kgGilmore
50
56 kgBrzeźna
77
56 kgSandig
93
62 kgHatteland Lima
94
65 kgSlappendel
107
67 kgCarrara
108
64 kg
2
64 kgValen
3
62 kgLjungskog
6
57 kgCooke
8
58 kgLindberg
9
63 kgBeltman
10
68 kgZabelinskaya
12
52 kgMelchers
16
59 kgGunnewijk
21
67 kgDoppmann
36
55 kgVisser
40
59 kgWild
44
75 kgArndt
45
59 kgMatusiak
47
58 kgGilmore
50
56 kgBrzeźna
77
56 kgSandig
93
62 kgHatteland Lima
94
65 kgSlappendel
107
67 kgCarrara
108
64 kg
Weight (KG) →
Result →
75
52
2
108
# | Rider | Weight (KG) |
---|---|---|
2 | TEUTENBERG Ina-Yoko | 64 |
3 | VALEN Anita | 62 |
6 | LJUNGSKOG Susanne | 57 |
8 | COOKE Nicole | 58 |
9 | LINDBERG Madeleine | 63 |
10 | BELTMAN Chantal | 68 |
12 | ZABELINSKAYA Olga | 52 |
16 | MELCHERS Mirjam | 59 |
21 | GUNNEWIJK Loes | 67 |
36 | DOPPMANN Priska | 55 |
40 | VISSER Adrie | 59 |
44 | WILD Kirsten | 75 |
45 | ARNDT Judith | 59 |
47 | MATUSIAK Bogumiła | 58 |
50 | GILMORE Rochelle | 56 |
77 | BRZEŹNA Paulina | 56 |
93 | SANDIG Madeleine | 62 |
94 | HATTELAND LIMA Tone | 65 |
107 | SLAPPENDEL Iris | 67 |
108 | CARRARA Vera | 64 |