Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 28
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Melchers
1
59 kgVillumsen
1
59 kgKoedooder
2
69 kgBeltman
2
68 kgGunnewijk
2
67 kgLindberg
3
63 kgArndt
3
59 kgRossner
3
64 kgvan den Brand
4
51 kgWild
8
75 kgHenrion
9
60 kgBecker
10
64 kgCooke
11
58 kgBronzini
11
54 kgSchleicher
11
58 kgVžesniauskaitė
11
57 kgGilmore
12
56 kgWyman
14
56 kgDoppmann
16
55 kg
1
59 kgVillumsen
1
59 kgKoedooder
2
69 kgBeltman
2
68 kgGunnewijk
2
67 kgLindberg
3
63 kgArndt
3
59 kgRossner
3
64 kgvan den Brand
4
51 kgWild
8
75 kgHenrion
9
60 kgBecker
10
64 kgCooke
11
58 kgBronzini
11
54 kgSchleicher
11
58 kgVžesniauskaitė
11
57 kgGilmore
12
56 kgWyman
14
56 kgDoppmann
16
55 kg
Weight (KG) →
Result →
75
51
1
16
# | Rider | Weight (KG) |
---|---|---|
1 | MELCHERS Mirjam | 59 |
1 | VILLUMSEN Linda | 59 |
2 | KOEDOODER Vera | 69 |
2 | BELTMAN Chantal | 68 |
2 | GUNNEWIJK Loes | 67 |
3 | LINDBERG Madeleine | 63 |
3 | ARNDT Judith | 59 |
3 | ROSSNER Petra | 64 |
4 | VAN DEN BRAND Daphny | 51 |
8 | WILD Kirsten | 75 |
9 | HENRION Ludivine | 60 |
10 | BECKER Charlotte | 64 |
11 | COOKE Nicole | 58 |
11 | BRONZINI Giorgia | 54 |
11 | SCHLEICHER Regina | 58 |
11 | VŽESNIAUSKAITĖ Modesta | 57 |
12 | GILMORE Rochelle | 56 |
14 | WYMAN Helen | 56 |
16 | DOPPMANN Priska | 55 |