Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.4 * weight + 120
This means that on average for every extra kilogram weight a rider loses -1.4 positions in the result.
Melchers
1
59 kgBeltman
2
68 kgCooke
4
58 kgWild
9
75 kgArndt
12
59 kgGunnewijk
13
67 kgHenrion
20
60 kgvan den Brand
26
51 kgVžesniauskaitė
28
57 kgKoedooder
29
69 kgBecker
37
64 kgBronzini
44
54 kgDoppmann
47
55 kgSchleicher
50
58 kgRossner
53
64 kgLindberg
54
63 kgWyman
59
56 kgVillumsen
62
59 kgGilmore
80
56 kg
1
59 kgBeltman
2
68 kgCooke
4
58 kgWild
9
75 kgArndt
12
59 kgGunnewijk
13
67 kgHenrion
20
60 kgvan den Brand
26
51 kgVžesniauskaitė
28
57 kgKoedooder
29
69 kgBecker
37
64 kgBronzini
44
54 kgDoppmann
47
55 kgSchleicher
50
58 kgRossner
53
64 kgLindberg
54
63 kgWyman
59
56 kgVillumsen
62
59 kgGilmore
80
56 kg
Weight (KG) →
Result →
75
51
1
80
# | Rider | Weight (KG) |
---|---|---|
1 | MELCHERS Mirjam | 59 |
2 | BELTMAN Chantal | 68 |
4 | COOKE Nicole | 58 |
9 | WILD Kirsten | 75 |
12 | ARNDT Judith | 59 |
13 | GUNNEWIJK Loes | 67 |
20 | HENRION Ludivine | 60 |
26 | VAN DEN BRAND Daphny | 51 |
28 | VŽESNIAUSKAITĖ Modesta | 57 |
29 | KOEDOODER Vera | 69 |
37 | BECKER Charlotte | 64 |
44 | BRONZINI Giorgia | 54 |
47 | DOPPMANN Priska | 55 |
50 | SCHLEICHER Regina | 58 |
53 | ROSSNER Petra | 64 |
54 | LINDBERG Madeleine | 63 |
59 | WYMAN Helen | 56 |
62 | VILLUMSEN Linda | 59 |
80 | GILMORE Rochelle | 56 |