Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 46
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Beltman
3
68 kgSchleicher
6
58 kgBronzini
9
54 kgMelchers
10
59 kgWild
12
75 kgGilmore
13
56 kgArndt
15
59 kgHenrion
25
60 kgCooke
26
58 kgGunnewijk
33
67 kgvan den Brand
36
51 kgVillumsen
41
59 kgWyman
44
56 kgKoedooder
57
69 kgVžesniauskaitė
60
57 kgDoppmann
63
55 kgLindberg
89
63 kg
3
68 kgSchleicher
6
58 kgBronzini
9
54 kgMelchers
10
59 kgWild
12
75 kgGilmore
13
56 kgArndt
15
59 kgHenrion
25
60 kgCooke
26
58 kgGunnewijk
33
67 kgvan den Brand
36
51 kgVillumsen
41
59 kgWyman
44
56 kgKoedooder
57
69 kgVžesniauskaitė
60
57 kgDoppmann
63
55 kgLindberg
89
63 kg
Weight (KG) →
Result →
75
51
3
89
# | Rider | Weight (KG) |
---|---|---|
3 | BELTMAN Chantal | 68 |
6 | SCHLEICHER Regina | 58 |
9 | BRONZINI Giorgia | 54 |
10 | MELCHERS Mirjam | 59 |
12 | WILD Kirsten | 75 |
13 | GILMORE Rochelle | 56 |
15 | ARNDT Judith | 59 |
25 | HENRION Ludivine | 60 |
26 | COOKE Nicole | 58 |
33 | GUNNEWIJK Loes | 67 |
36 | VAN DEN BRAND Daphny | 51 |
41 | VILLUMSEN Linda | 59 |
44 | WYMAN Helen | 56 |
57 | KOEDOODER Vera | 69 |
60 | VŽESNIAUSKAITĖ Modesta | 57 |
63 | DOPPMANN Priska | 55 |
89 | LINDBERG Madeleine | 63 |