Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 21
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Armstrong
1
58 kgArndt
2
59 kgVillumsen
3
59 kgSoeder
5
52 kgBecker
6
64 kgVos
7
58 kgJohansson
9
58 kgDoppmann
10
55 kgMelchers
11
59 kgGunnewijk
13
67 kgValen
15
62 kgvan Dijk
18
71 kgLichtenberg
19
52 kgDe Vocht
22
61 kgBaccaille
25
61 kgWild
26
75 kgBeltman
27
68 kgHenrion
32
60 kgBrzeźna
36
56 kgBronzini
37
54 kgVisser
41
59 kgSels
45
65 kgSlappendel
57
67 kg
1
58 kgArndt
2
59 kgVillumsen
3
59 kgSoeder
5
52 kgBecker
6
64 kgVos
7
58 kgJohansson
9
58 kgDoppmann
10
55 kgMelchers
11
59 kgGunnewijk
13
67 kgValen
15
62 kgvan Dijk
18
71 kgLichtenberg
19
52 kgDe Vocht
22
61 kgBaccaille
25
61 kgWild
26
75 kgBeltman
27
68 kgHenrion
32
60 kgBrzeźna
36
56 kgBronzini
37
54 kgVisser
41
59 kgSels
45
65 kgSlappendel
57
67 kg
Weight (KG) →
Result →
75
52
1
57
# | Rider | Weight (KG) |
---|---|---|
1 | ARMSTRONG Kristin | 58 |
2 | ARNDT Judith | 59 |
3 | VILLUMSEN Linda | 59 |
5 | SOEDER Christiane | 52 |
6 | BECKER Charlotte | 64 |
7 | VOS Marianne | 58 |
9 | JOHANSSON Emma | 58 |
10 | DOPPMANN Priska | 55 |
11 | MELCHERS Mirjam | 59 |
13 | GUNNEWIJK Loes | 67 |
15 | VALEN Anita | 62 |
18 | VAN DIJK Ellen | 71 |
19 | LICHTENBERG Claudia | 52 |
22 | DE VOCHT Liesbet | 61 |
25 | BACCAILLE Monia | 61 |
26 | WILD Kirsten | 75 |
27 | BELTMAN Chantal | 68 |
32 | HENRION Ludivine | 60 |
36 | BRZEŹNA Paulina | 56 |
37 | BRONZINI Giorgia | 54 |
41 | VISSER Adrie | 59 |
45 | SELS Loes | 65 |
57 | SLAPPENDEL Iris | 67 |