Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 47
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Teutenberg
1
64 kgWild
2
75 kgVos
3
58 kgMelchers
7
59 kgArndt
8
59 kgBeltman
9
68 kgGunnewijk
10
67 kgBrand
13
57 kgBecker
22
64 kgvan Vleuten
25
59 kgvan den Broek-Blaak
27
64 kgSöderberg
28
60 kgSlappendel
30
67 kgKoedooder
42
69 kgVisser
44
59 kgSchleicher
60
58 kgHatteland Lima
63
65 kgTenniglo
74
64 kg
1
64 kgWild
2
75 kgVos
3
58 kgMelchers
7
59 kgArndt
8
59 kgBeltman
9
68 kgGunnewijk
10
67 kgBrand
13
57 kgBecker
22
64 kgvan Vleuten
25
59 kgvan den Broek-Blaak
27
64 kgSöderberg
28
60 kgSlappendel
30
67 kgKoedooder
42
69 kgVisser
44
59 kgSchleicher
60
58 kgHatteland Lima
63
65 kgTenniglo
74
64 kg
Weight (KG) →
Result →
75
57
1
74
# | Rider | Weight (KG) |
---|---|---|
1 | TEUTENBERG Ina-Yoko | 64 |
2 | WILD Kirsten | 75 |
3 | VOS Marianne | 58 |
7 | MELCHERS Mirjam | 59 |
8 | ARNDT Judith | 59 |
9 | BELTMAN Chantal | 68 |
10 | GUNNEWIJK Loes | 67 |
13 | BRAND Lucinda | 57 |
22 | BECKER Charlotte | 64 |
25 | VAN VLEUTEN Annemiek | 59 |
27 | VAN DEN BROEK-BLAAK Chantal | 64 |
28 | SÖDERBERG Isabelle | 60 |
30 | SLAPPENDEL Iris | 67 |
42 | KOEDOODER Vera | 69 |
44 | VISSER Adrie | 59 |
60 | SCHLEICHER Regina | 58 |
63 | HATTELAND LIMA Tone | 65 |
74 | TENNIGLO Moniek | 64 |