Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 74
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
Melchers
2
59 kgArndt
3
59 kgWild
5
75 kgVos
6
58 kgBecker
7
64 kgTeutenberg
8
64 kgGunnewijk
10
67 kgBeltman
17
68 kgvan Vleuten
18
59 kgSlappendel
19
67 kgvan den Broek-Blaak
21
64 kgKoedooder
23
69 kgBrand
29
57 kgVisser
35
59 kgTenniglo
49
64 kgSchleicher
54
58 kgSöderberg
63
60 kgHatteland Lima
72
65 kg
2
59 kgArndt
3
59 kgWild
5
75 kgVos
6
58 kgBecker
7
64 kgTeutenberg
8
64 kgGunnewijk
10
67 kgBeltman
17
68 kgvan Vleuten
18
59 kgSlappendel
19
67 kgvan den Broek-Blaak
21
64 kgKoedooder
23
69 kgBrand
29
57 kgVisser
35
59 kgTenniglo
49
64 kgSchleicher
54
58 kgSöderberg
63
60 kgHatteland Lima
72
65 kg
Weight (KG) →
Result →
75
57
2
72
# | Rider | Weight (KG) |
---|---|---|
2 | MELCHERS Mirjam | 59 |
3 | ARNDT Judith | 59 |
5 | WILD Kirsten | 75 |
6 | VOS Marianne | 58 |
7 | BECKER Charlotte | 64 |
8 | TEUTENBERG Ina-Yoko | 64 |
10 | GUNNEWIJK Loes | 67 |
17 | BELTMAN Chantal | 68 |
18 | VAN VLEUTEN Annemiek | 59 |
19 | SLAPPENDEL Iris | 67 |
21 | VAN DEN BROEK-BLAAK Chantal | 64 |
23 | KOEDOODER Vera | 69 |
29 | BRAND Lucinda | 57 |
35 | VISSER Adrie | 59 |
49 | TENNIGLO Moniek | 64 |
54 | SCHLEICHER Regina | 58 |
63 | SÖDERBERG Isabelle | 60 |
72 | HATTELAND LIMA Tone | 65 |