Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.9 * weight + 151
This means that on average for every extra kilogram weight a rider loses -1.9 positions in the result.
Teutenberg
1
64 kgWild
2
75 kgKoedooder
19
69 kgvan Vleuten
20
59 kgVos
21
58 kgHatteland Lima
22
65 kgBeltman
23
68 kgGunnewijk
25
67 kgArndt
31
59 kgSlappendel
33
67 kgMelchers
36
59 kgBecker
37
64 kgBrand
38
57 kgvan den Broek-Blaak
51
64 kgVisser
56
59 kgTenniglo
59
64 kgSchleicher
70
58 kg
1
64 kgWild
2
75 kgKoedooder
19
69 kgvan Vleuten
20
59 kgVos
21
58 kgHatteland Lima
22
65 kgBeltman
23
68 kgGunnewijk
25
67 kgArndt
31
59 kgSlappendel
33
67 kgMelchers
36
59 kgBecker
37
64 kgBrand
38
57 kgvan den Broek-Blaak
51
64 kgVisser
56
59 kgTenniglo
59
64 kgSchleicher
70
58 kg
Weight (KG) →
Result →
75
57
1
70
# | Rider | Weight (KG) |
---|---|---|
1 | TEUTENBERG Ina-Yoko | 64 |
2 | WILD Kirsten | 75 |
19 | KOEDOODER Vera | 69 |
20 | VAN VLEUTEN Annemiek | 59 |
21 | VOS Marianne | 58 |
22 | HATTELAND LIMA Tone | 65 |
23 | BELTMAN Chantal | 68 |
25 | GUNNEWIJK Loes | 67 |
31 | ARNDT Judith | 59 |
33 | SLAPPENDEL Iris | 67 |
36 | MELCHERS Mirjam | 59 |
37 | BECKER Charlotte | 64 |
38 | BRAND Lucinda | 57 |
51 | VAN DEN BROEK-BLAAK Chantal | 64 |
56 | VISSER Adrie | 59 |
59 | TENNIGLO Moniek | 64 |
70 | SCHLEICHER Regina | 58 |