Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 51
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Teutenberg
5
64 kgArndt
6
59 kgBecker
7
64 kgWild
10
75 kgBeltman
13
68 kgVos
17
58 kgGunnewijk
20
67 kgvan Vleuten
21
59 kgBrand
25
57 kgMelchers
32
59 kgSlappendel
41
67 kgVisser
47
59 kgKoedooder
50
69 kgvan den Broek-Blaak
53
64 kgSchleicher
59
58 kgHatteland Lima
64
65 kgTenniglo
75
64 kg
5
64 kgArndt
6
59 kgBecker
7
64 kgWild
10
75 kgBeltman
13
68 kgVos
17
58 kgGunnewijk
20
67 kgvan Vleuten
21
59 kgBrand
25
57 kgMelchers
32
59 kgSlappendel
41
67 kgVisser
47
59 kgKoedooder
50
69 kgvan den Broek-Blaak
53
64 kgSchleicher
59
58 kgHatteland Lima
64
65 kgTenniglo
75
64 kg
Weight (KG) →
Result →
75
57
5
75
# | Rider | Weight (KG) |
---|---|---|
5 | TEUTENBERG Ina-Yoko | 64 |
6 | ARNDT Judith | 59 |
7 | BECKER Charlotte | 64 |
10 | WILD Kirsten | 75 |
13 | BELTMAN Chantal | 68 |
17 | VOS Marianne | 58 |
20 | GUNNEWIJK Loes | 67 |
21 | VAN VLEUTEN Annemiek | 59 |
25 | BRAND Lucinda | 57 |
32 | MELCHERS Mirjam | 59 |
41 | SLAPPENDEL Iris | 67 |
47 | VISSER Adrie | 59 |
50 | KOEDOODER Vera | 69 |
53 | VAN DEN BROEK-BLAAK Chantal | 64 |
59 | SCHLEICHER Regina | 58 |
64 | HATTELAND LIMA Tone | 65 |
75 | TENNIGLO Moniek | 64 |