Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 32
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Brennauer
1
63 kgVos
2
58 kgD'hoore
3
63 kgDeignan
4
57 kgvan Dijk
6
71 kgGuarischi
7
57 kgOlds
8
54 kgConfalonieri
9
56 kgMoberg
10
56 kgJohansson
11
58 kgvan den Broek-Blaak
12
64 kgDuyck
13
60 kgStevens
14
55 kgHoskins
15
64 kgFrapporti
16
63 kgCordon-Ragot
17
60 kgCanuel
19
51 kgKiesanowski
20
56 kgMustonen
21
58 kg
1
63 kgVos
2
58 kgD'hoore
3
63 kgDeignan
4
57 kgvan Dijk
6
71 kgGuarischi
7
57 kgOlds
8
54 kgConfalonieri
9
56 kgMoberg
10
56 kgJohansson
11
58 kgvan den Broek-Blaak
12
64 kgDuyck
13
60 kgStevens
14
55 kgHoskins
15
64 kgFrapporti
16
63 kgCordon-Ragot
17
60 kgCanuel
19
51 kgKiesanowski
20
56 kgMustonen
21
58 kg
Weight (KG) →
Result →
71
51
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | BRENNAUER Lisa | 63 |
2 | VOS Marianne | 58 |
3 | D'HOORE Jolien | 63 |
4 | DEIGNAN Elizabeth | 57 |
6 | VAN DIJK Ellen | 71 |
7 | GUARISCHI Barbara | 57 |
8 | OLDS Shelley | 54 |
9 | CONFALONIERI Maria Giulia | 56 |
10 | MOBERG Emilie | 56 |
11 | JOHANSSON Emma | 58 |
12 | VAN DEN BROEK-BLAAK Chantal | 64 |
13 | DUYCK Ann-Sophie | 60 |
14 | STEVENS Evelyn | 55 |
15 | HOSKINS Melissa | 64 |
16 | FRAPPORTI Simona | 63 |
17 | CORDON-RAGOT Audrey | 60 |
19 | CANUEL Karol-Ann | 51 |
20 | KIESANOWSKI Joanne | 56 |
21 | MUSTONEN Sara | 58 |