Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 44
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Brand
1
57 kgD'hoore
2
63 kgMajerus
3
56 kgBrennauer
4
63 kgWild
7
75 kgPieters
8
58 kgBastianelli
9
60 kgvan Dijk
11
71 kgLongo Borghini
12
59 kgGuarnier
17
54 kgvan Vleuten
19
59 kgAmialiusik
20
53 kgLichtenberg
21
52 kgSpratt
22
55 kgGarfoot
23
56 kgKopecky
24
66 kgHannes
26
51 kg
1
57 kgD'hoore
2
63 kgMajerus
3
56 kgBrennauer
4
63 kgWild
7
75 kgPieters
8
58 kgBastianelli
9
60 kgvan Dijk
11
71 kgLongo Borghini
12
59 kgGuarnier
17
54 kgvan Vleuten
19
59 kgAmialiusik
20
53 kgLichtenberg
21
52 kgSpratt
22
55 kgGarfoot
23
56 kgKopecky
24
66 kgHannes
26
51 kg
Weight (KG) →
Result →
75
51
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | BRAND Lucinda | 57 |
2 | D'HOORE Jolien | 63 |
3 | MAJERUS Christine | 56 |
4 | BRENNAUER Lisa | 63 |
7 | WILD Kirsten | 75 |
8 | PIETERS Amy | 58 |
9 | BASTIANELLI Marta | 60 |
11 | VAN DIJK Ellen | 71 |
12 | LONGO BORGHINI Elisa | 59 |
17 | GUARNIER Megan | 54 |
19 | VAN VLEUTEN Annemiek | 59 |
20 | AMIALIUSIK Alena | 53 |
21 | LICHTENBERG Claudia | 52 |
22 | SPRATT Amanda | 55 |
23 | GARFOOT Katrin | 56 |
24 | KOPECKY Lotte | 66 |
26 | HANNES Kaat | 51 |