Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 40
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Wiebes
1
60 kgMarkus
3
61 kgCordon-Ragot
5
60 kgHenderson
8
58 kgJackson
9
63 kgDronova-Balabolina
10
63 kgPaladin
12
59 kgDe Wilde
13
62 kgDuval
14
53 kgSpratt
15
55 kgConsonni
16
59 kgSanguineti
17
61 kgWood
18
59 kgHosking
19
60 kgKorevaar
22
59 kgGhekiere
23
52 kgKasper
24
59 kgvan den Broek-Blaak
25
64 kg
1
60 kgMarkus
3
61 kgCordon-Ragot
5
60 kgHenderson
8
58 kgJackson
9
63 kgDronova-Balabolina
10
63 kgPaladin
12
59 kgDe Wilde
13
62 kgDuval
14
53 kgSpratt
15
55 kgConsonni
16
59 kgSanguineti
17
61 kgWood
18
59 kgHosking
19
60 kgKorevaar
22
59 kgGhekiere
23
52 kgKasper
24
59 kgvan den Broek-Blaak
25
64 kg
Weight (KG) →
Result →
64
52
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | WIEBES Lorena | 60 |
3 | MARKUS Riejanne | 61 |
5 | CORDON-RAGOT Audrey | 60 |
8 | HENDERSON Anna | 58 |
9 | JACKSON Alison | 63 |
10 | DRONOVA-BALABOLINA Tamara | 63 |
12 | PALADIN Soraya | 59 |
13 | DE WILDE Julie | 62 |
14 | DUVAL Eugénie | 53 |
15 | SPRATT Amanda | 55 |
16 | CONSONNI Chiara | 59 |
17 | SANGUINETI Ilaria | 61 |
18 | WOOD Alice | 59 |
19 | HOSKING Chloe | 60 |
22 | KOREVAAR Jeanne | 59 |
23 | GHEKIERE Justine | 52 |
24 | KASPER Romy | 59 |
25 | VAN DEN BROEK-BLAAK Chantal | 64 |