Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 65
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
Wiebes
1
60 kgBalsamo
2
55 kgKopecky
3
66 kgGuarischi
7
57 kgvan Dijk
8
71 kgSmulders
12
51 kgSchweinberger
13
67 kgConfalonieri
14
56 kgBarbieri
16
55 kgHenderson
17
58 kgAndersen
18
55 kgLongo Borghini
20
59 kgvan Agt
22
54 kgMarkus
24
61 kgCampbell
26
63 kgBerteau
30
57 kgPaternoster
31
53 kgTruyen
32
55 kgCordon-Ragot
34
60 kgBertizzolo
35
54 kgManly
37
53 kg
1
60 kgBalsamo
2
55 kgKopecky
3
66 kgGuarischi
7
57 kgvan Dijk
8
71 kgSmulders
12
51 kgSchweinberger
13
67 kgConfalonieri
14
56 kgBarbieri
16
55 kgHenderson
17
58 kgAndersen
18
55 kgLongo Borghini
20
59 kgvan Agt
22
54 kgMarkus
24
61 kgCampbell
26
63 kgBerteau
30
57 kgPaternoster
31
53 kgTruyen
32
55 kgCordon-Ragot
34
60 kgBertizzolo
35
54 kgManly
37
53 kg
Weight (KG) →
Result →
71
51
1
37
# | Rider | Weight (KG) |
---|---|---|
1 | WIEBES Lorena | 60 |
2 | BALSAMO Elisa | 55 |
3 | KOPECKY Lotte | 66 |
7 | GUARISCHI Barbara | 57 |
8 | VAN DIJK Ellen | 71 |
12 | SMULDERS Silke | 51 |
13 | SCHWEINBERGER Christina | 67 |
14 | CONFALONIERI Maria Giulia | 56 |
16 | BARBIERI Rachele | 55 |
17 | HENDERSON Anna | 58 |
18 | ANDERSEN Susanne | 55 |
20 | LONGO BORGHINI Elisa | 59 |
22 | VAN AGT Eva | 54 |
24 | MARKUS Riejanne | 61 |
26 | CAMPBELL Teniel | 63 |
30 | BERTEAU Victoire | 57 |
31 | PATERNOSTER Letizia | 53 |
32 | TRUYEN Marthe | 55 |
34 | CORDON-RAGOT Audrey | 60 |
35 | BERTIZZOLO Sofia | 54 |
37 | MANLY Alexandra | 53 |