Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 27
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Wiebes
1
60 kgBalsamo
2
55 kgKopecky
3
66 kgGuarischi
8
57 kgSchweinberger
9
67 kgvan Dijk
10
71 kgBarbieri
13
55 kgPaternoster
15
53 kgSmulders
16
51 kgConfalonieri
17
56 kgHenderson
20
58 kgAndersen
21
55 kgLongo Borghini
23
59 kgvan Agt
25
54 kgMarkus
26
61 kgCampbell
28
63 kgBerteau
30
57 kgManly
31
53 kgTruyen
32
55 kgCordon-Ragot
34
60 kgBertizzolo
35
54 kgKuijpers
37
73 kg
1
60 kgBalsamo
2
55 kgKopecky
3
66 kgGuarischi
8
57 kgSchweinberger
9
67 kgvan Dijk
10
71 kgBarbieri
13
55 kgPaternoster
15
53 kgSmulders
16
51 kgConfalonieri
17
56 kgHenderson
20
58 kgAndersen
21
55 kgLongo Borghini
23
59 kgvan Agt
25
54 kgMarkus
26
61 kgCampbell
28
63 kgBerteau
30
57 kgManly
31
53 kgTruyen
32
55 kgCordon-Ragot
34
60 kgBertizzolo
35
54 kgKuijpers
37
73 kg
Weight (KG) →
Result →
73
51
1
37
# | Rider | Weight (KG) |
---|---|---|
1 | WIEBES Lorena | 60 |
2 | BALSAMO Elisa | 55 |
3 | KOPECKY Lotte | 66 |
8 | GUARISCHI Barbara | 57 |
9 | SCHWEINBERGER Christina | 67 |
10 | VAN DIJK Ellen | 71 |
13 | BARBIERI Rachele | 55 |
15 | PATERNOSTER Letizia | 53 |
16 | SMULDERS Silke | 51 |
17 | CONFALONIERI Maria Giulia | 56 |
20 | HENDERSON Anna | 58 |
21 | ANDERSEN Susanne | 55 |
23 | LONGO BORGHINI Elisa | 59 |
25 | VAN AGT Eva | 54 |
26 | MARKUS Riejanne | 61 |
28 | CAMPBELL Teniel | 63 |
30 | BERTEAU Victoire | 57 |
31 | MANLY Alexandra | 53 |
32 | TRUYEN Marthe | 55 |
34 | CORDON-RAGOT Audrey | 60 |
35 | BERTIZZOLO Sofia | 54 |
37 | KUIJPERS Evy | 73 |