Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 72
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Vermote
1
74 kgSteels
10
78 kgWallays
11
77 kgVanoverberghe
14
65 kgOckeloen
15
66 kgRobert
20
68 kgHelven
22
74 kgMcEvoy
23
67 kgDeclercq
24
78 kgGmelich Meijling
25
77 kgRowsell
27
66 kgVermote
29
74 kgBruyneel
30
85 kgSalomein
38
80 kgJanse van Rensburg
50
74 kgVan der Sande
69
67 kgBaestaens
81
68 kg
1
74 kgSteels
10
78 kgWallays
11
77 kgVanoverberghe
14
65 kgOckeloen
15
66 kgRobert
20
68 kgHelven
22
74 kgMcEvoy
23
67 kgDeclercq
24
78 kgGmelich Meijling
25
77 kgRowsell
27
66 kgVermote
29
74 kgBruyneel
30
85 kgSalomein
38
80 kgJanse van Rensburg
50
74 kgVan der Sande
69
67 kgBaestaens
81
68 kg
Weight (KG) →
Result →
85
65
1
81
# | Rider | Weight (KG) |
---|---|---|
1 | VERMOTE Julien | 74 |
10 | STEELS Stijn | 78 |
11 | WALLAYS Jelle | 77 |
14 | VANOVERBERGHE Arthur | 65 |
15 | OCKELOEN Jasper | 66 |
20 | ROBERT Fréderique | 68 |
22 | HELVEN Sander | 74 |
23 | MCEVOY Jonathan | 67 |
24 | DECLERCQ Tim | 78 |
25 | GMELICH MEIJLING Jarno | 77 |
27 | ROWSELL Erick | 66 |
29 | VERMOTE Alphonse | 74 |
30 | BRUYNEEL Giel | 85 |
38 | SALOMEIN Jarl | 80 |
50 | JANSE VAN RENSBURG Reinardt | 74 |
69 | VAN DER SANDE Tosh | 67 |
81 | BAESTAENS Vincent | 68 |