Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.5 * weight + 141
This means that on average for every extra kilogram weight a rider loses -1.5 positions in the result.
Vermote
2
74 kgSteels
3
78 kgVanoverberghe
4
65 kgGmelich Meijling
5
77 kgWallays
6
77 kgRobert
15
68 kgVermote
23
74 kgBruyneel
27
85 kgDeclercq
28
78 kgHelven
29
74 kgSalomein
35
80 kgOckeloen
36
66 kgMcEvoy
39
67 kgSleurs
43
68 kgJanse van Rensburg
46
74 kgRowsell
52
66 kgBaestaens
55
68 kgVan der Sande
65
67 kgvan den Brand
120
71 kg
2
74 kgSteels
3
78 kgVanoverberghe
4
65 kgGmelich Meijling
5
77 kgWallays
6
77 kgRobert
15
68 kgVermote
23
74 kgBruyneel
27
85 kgDeclercq
28
78 kgHelven
29
74 kgSalomein
35
80 kgOckeloen
36
66 kgMcEvoy
39
67 kgSleurs
43
68 kgJanse van Rensburg
46
74 kgRowsell
52
66 kgBaestaens
55
68 kgVan der Sande
65
67 kgvan den Brand
120
71 kg
Weight (KG) →
Result →
85
65
2
120
# | Rider | Weight (KG) |
---|---|---|
2 | VERMOTE Julien | 74 |
3 | STEELS Stijn | 78 |
4 | VANOVERBERGHE Arthur | 65 |
5 | GMELICH MEIJLING Jarno | 77 |
6 | WALLAYS Jelle | 77 |
15 | ROBERT Fréderique | 68 |
23 | VERMOTE Alphonse | 74 |
27 | BRUYNEEL Giel | 85 |
28 | DECLERCQ Tim | 78 |
29 | HELVEN Sander | 74 |
35 | SALOMEIN Jarl | 80 |
36 | OCKELOEN Jasper | 66 |
39 | MCEVOY Jonathan | 67 |
43 | SLEURS Christophe | 68 |
46 | JANSE VAN RENSBURG Reinardt | 74 |
52 | ROWSELL Erick | 66 |
55 | BAESTAENS Vincent | 68 |
65 | VAN DER SANDE Tosh | 67 |
120 | VAN DEN BRAND Twan | 71 |