Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.5 * weight + 165
This means that on average for every extra kilogram weight a rider loses -1.5 positions in the result.
Robert
1
68 kgGmelich Meijling
2
77 kgSteels
4
78 kgOckeloen
6
66 kgSalomein
9
80 kgRowsell
22
66 kgJanse van Rensburg
31
74 kgVermote
38
74 kgBruyneel
50
85 kgMcEvoy
60
67 kgVermote
63
74 kgVanoverberghe
70
65 kgHelven
72
74 kgDeclercq
76
78 kgVan der Sande
82
67 kgvan den Brand
89
71 kgWallays
110
77 kgSleurs
134
68 kgBaestaens
139
68 kg
1
68 kgGmelich Meijling
2
77 kgSteels
4
78 kgOckeloen
6
66 kgSalomein
9
80 kgRowsell
22
66 kgJanse van Rensburg
31
74 kgVermote
38
74 kgBruyneel
50
85 kgMcEvoy
60
67 kgVermote
63
74 kgVanoverberghe
70
65 kgHelven
72
74 kgDeclercq
76
78 kgVan der Sande
82
67 kgvan den Brand
89
71 kgWallays
110
77 kgSleurs
134
68 kgBaestaens
139
68 kg
Weight (KG) →
Result →
85
65
1
139
# | Rider | Weight (KG) |
---|---|---|
1 | ROBERT Fréderique | 68 |
2 | GMELICH MEIJLING Jarno | 77 |
4 | STEELS Stijn | 78 |
6 | OCKELOEN Jasper | 66 |
9 | SALOMEIN Jarl | 80 |
22 | ROWSELL Erick | 66 |
31 | JANSE VAN RENSBURG Reinardt | 74 |
38 | VERMOTE Julien | 74 |
50 | BRUYNEEL Giel | 85 |
60 | MCEVOY Jonathan | 67 |
63 | VERMOTE Alphonse | 74 |
70 | VANOVERBERGHE Arthur | 65 |
72 | HELVEN Sander | 74 |
76 | DECLERCQ Tim | 78 |
82 | VAN DER SANDE Tosh | 67 |
89 | VAN DEN BRAND Twan | 71 |
110 | WALLAYS Jelle | 77 |
134 | SLEURS Christophe | 68 |
139 | BAESTAENS Vincent | 68 |