Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.9 * weight + 167
This means that on average for every extra kilogram weight a rider loses -1.9 positions in the result.
Wallays
1
77 kgSteels
3
78 kgVanoverberghe
4
65 kgVermote
7
74 kgHelven
14
74 kgRobert
15
68 kgMcEvoy
17
67 kgDeclercq
19
78 kgGmelich Meijling
20
77 kgRowsell
23
66 kgVermote
25
74 kgBruyneel
26
85 kgSalomein
27
80 kgJanse van Rensburg
57
74 kgOckeloen
66
66 kgVan der Sande
86
67 kgBaestaens
119
68 kg
1
77 kgSteels
3
78 kgVanoverberghe
4
65 kgVermote
7
74 kgHelven
14
74 kgRobert
15
68 kgMcEvoy
17
67 kgDeclercq
19
78 kgGmelich Meijling
20
77 kgRowsell
23
66 kgVermote
25
74 kgBruyneel
26
85 kgSalomein
27
80 kgJanse van Rensburg
57
74 kgOckeloen
66
66 kgVan der Sande
86
67 kgBaestaens
119
68 kg
Weight (KG) →
Result →
85
65
1
119
# | Rider | Weight (KG) |
---|---|---|
1 | WALLAYS Jelle | 77 |
3 | STEELS Stijn | 78 |
4 | VANOVERBERGHE Arthur | 65 |
7 | VERMOTE Julien | 74 |
14 | HELVEN Sander | 74 |
15 | ROBERT Fréderique | 68 |
17 | MCEVOY Jonathan | 67 |
19 | DECLERCQ Tim | 78 |
20 | GMELICH MEIJLING Jarno | 77 |
23 | ROWSELL Erick | 66 |
25 | VERMOTE Alphonse | 74 |
26 | BRUYNEEL Giel | 85 |
27 | SALOMEIN Jarl | 80 |
57 | JANSE VAN RENSBURG Reinardt | 74 |
66 | OCKELOEN Jasper | 66 |
86 | VAN DER SANDE Tosh | 67 |
119 | BAESTAENS Vincent | 68 |