Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 35
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Salomein
2
80 kgRobert
3
68 kgMcEvoy
4
67 kgWallays
5
77 kgDeclercq
7
78 kgRowsell
15
66 kgHelven
18
74 kgOckeloen
24
66 kgVermote
27
74 kgBaestaens
29
68 kgVermote
35
74 kgJanse van Rensburg
43
74 kgBruyneel
56
85 kgSteels
66
78 kgVanoverberghe
86
65 kgVan der Sande
107
67 kgGmelich Meijling
125
77 kg
2
80 kgRobert
3
68 kgMcEvoy
4
67 kgWallays
5
77 kgDeclercq
7
78 kgRowsell
15
66 kgHelven
18
74 kgOckeloen
24
66 kgVermote
27
74 kgBaestaens
29
68 kgVermote
35
74 kgJanse van Rensburg
43
74 kgBruyneel
56
85 kgSteels
66
78 kgVanoverberghe
86
65 kgVan der Sande
107
67 kgGmelich Meijling
125
77 kg
Weight (KG) →
Result →
85
65
2
125
# | Rider | Weight (KG) |
---|---|---|
2 | SALOMEIN Jarl | 80 |
3 | ROBERT Fréderique | 68 |
4 | MCEVOY Jonathan | 67 |
5 | WALLAYS Jelle | 77 |
7 | DECLERCQ Tim | 78 |
15 | ROWSELL Erick | 66 |
18 | HELVEN Sander | 74 |
24 | OCKELOEN Jasper | 66 |
27 | VERMOTE Alphonse | 74 |
29 | BAESTAENS Vincent | 68 |
35 | VERMOTE Julien | 74 |
43 | JANSE VAN RENSBURG Reinardt | 74 |
56 | BRUYNEEL Giel | 85 |
66 | STEELS Stijn | 78 |
86 | VANOVERBERGHE Arthur | 65 |
107 | VAN DER SANDE Tosh | 67 |
125 | GMELICH MEIJLING Jarno | 77 |