Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.3 * weight - 58
This means that on average for every extra kilogram weight a rider loses 1.3 positions in the result.
Vermote
3
74 kgBaestaens
4
68 kgOckeloen
5
66 kgRobert
14
68 kgDeclercq
24
78 kgMcEvoy
30
67 kgRowsell
35
66 kgHelven
36
74 kgJanse van Rensburg
43
74 kgGmelich Meijling
44
77 kgBruyneel
53
85 kgSteels
56
78 kgVermote
57
74 kgVan der Sande
65
67 kgWallays
66
77 kgVanoverberghe
69
65 kgSalomein
73
80 kg
3
74 kgBaestaens
4
68 kgOckeloen
5
66 kgRobert
14
68 kgDeclercq
24
78 kgMcEvoy
30
67 kgRowsell
35
66 kgHelven
36
74 kgJanse van Rensburg
43
74 kgGmelich Meijling
44
77 kgBruyneel
53
85 kgSteels
56
78 kgVermote
57
74 kgVan der Sande
65
67 kgWallays
66
77 kgVanoverberghe
69
65 kgSalomein
73
80 kg
Weight (KG) →
Result →
85
65
3
73
# | Rider | Weight (KG) |
---|---|---|
3 | VERMOTE Julien | 74 |
4 | BAESTAENS Vincent | 68 |
5 | OCKELOEN Jasper | 66 |
14 | ROBERT Fréderique | 68 |
24 | DECLERCQ Tim | 78 |
30 | MCEVOY Jonathan | 67 |
35 | ROWSELL Erick | 66 |
36 | HELVEN Sander | 74 |
43 | JANSE VAN RENSBURG Reinardt | 74 |
44 | GMELICH MEIJLING Jarno | 77 |
53 | BRUYNEEL Giel | 85 |
56 | STEELS Stijn | 78 |
57 | VERMOTE Alphonse | 74 |
65 | VAN DER SANDE Tosh | 67 |
66 | WALLAYS Jelle | 77 |
69 | VANOVERBERGHE Arthur | 65 |
73 | SALOMEIN Jarl | 80 |